ИСПОЛЬЗОВАНИЕ СТАНДАРТНЫХ ОБРАЗЦОВ ДЛЯ РАЗРАБОТКИ НОРМАТИВОВ КОНТРОЛЯ ПРАВИЛЬНОСТИ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

В.Т. Фирсов, к.б.н., Г.А. Ступакова, к.б.н., С.А. Деньгина, Т.Б. Громова, В.Ф. Чиркова, В.М. Иванова, ВНИИА

Контрольные образцы кормов, сельскохозяйственной и пищевой продукции, аттестованные в процессе межлабораторного эксперимента в качестве отраслевых стандартных образцов, можно использовать для разработки норматива контроля правильности результатов измерений. Это позволит проводить более достоверную оценку качества исследуемой продукции растениеводства.

Ключевые слова: лаборатория, анализ, корма, сельскохозяйственная и пищевая продукция, стандартный образец, погрешность, правильность, уравнение регрессии.

Для получения достоверных результатов исследований важное значение имеет разработка научно обоснованного норматива контроля правильности результатов анализа в соответствии с фактической точностью, достигнутой в данное время. Номенклатура образцов, используемых при разработке норматива контроля, должна включать различные виды наиболее часто анализируемых объектов. Это позволит достоверно оценивать качество результатов измерений в достаточно широком диапазоне значений содержания определяемого компонента.

Для выполнения данной работы в 16 аккредитованных испытательных лабораториях агрохимической службы, имеющих достаточную точность результатов измерений, в течение двух последних лет были проведены аттестационные анализы контрольных растительных образцов. В таблице 1 представлены результаты анализа кормов, сельскохозяйственной и пищевой продукции на содержание меди по данным межла-

бораторных исследований в 2009-2010 гг. Номенклатура исследуемых образцов включала: крупу манную, солому пшеничную, зерно ржи, зерно люпина и корма кукурузные сухие. Содержание элемента в пересчете на сухое вещество было от 1,60 до 21,50 мг/кг. Полученные результаты исследований после предварительной их оценки (проверка сомнительных результатов анализа на принадлежность к данной выборке) использовали для расчета метрологических характеристик, в том числе аттестованного содержания компонента.

В качестве примера приведём математическую обработку результатов анализа образца манной крупы.

В процессе исследований были рассчитаны следующие показатели: среднее арифметическое значение $x_1 = 1,72$; аттестованное содержание компонента $x_{1ar.} = 1,70$;

среднее абсолютное систематическое отклонение (с учетом знака) $\overline{d_1} = 0.32:15=0.02;$

абсолютное среднеквадратическое отклонение $\mathrm{Sd_i}$ разностей $\mathrm{d_{1i}}$ от средней разности $\overline{d_1}$ находили по формуле $\mathrm{Sd}_1 = \sqrt{0,0542:15}$ =0,060. Значимость систематической погрешности анализа $\overline{d_1}$ оценивали по t - квантилю распределения Стьюдента. Для этого было рассчитано фактическое значение $\hat{t} = (0,02 \cdot \sqrt{16}\):0,060 = 1,33$.

1. Данные для расчета норматива контроля правильности результатов измерений по итогам межлабораторного эксперимента определения содержания меди.

Количест-	Содержание меди в анализируемых образцах, мг/кг сухого вещества									
во лабора-	Крупа манная						Зерно	Зерно	Кукурузный	
торий	Среднее	Разница с	Разница со			пше-	ржи	люпина	корм	
	$\overline{x_{1i}}$	аттестован- ным $d_{1i} = \overline{\frac{1}{x_{1i}}} - x_{1ar.}$	средней разностью	Sd _i	$(d_{1i})^2$	$\frac{$ ничная \overline{x}_{2i}	$\overline{x_{3i}}$	$\overline{x_{4i}}$	$\frac{\overline{x}_{5i}}{x_{5i}}$	
	11		d_{1i} - $\overline{d_1}$	$(d_{1i} - \overline{d_1})^2$						
1	1,64	- 0,06	- 0,08	0,0064	0,0036	1,97	3,92	10,88	20,60	
2	1,71	0,01	- 0,01	0,0001	0,0001	2,12	4,00	10,24	19,26	
3	1,68	- 0,02	0	0	0,0004	2,02	4,10	10,60	18,00	
4	1,76	0,06	0,04	0,0016	0,0036	2,23	4,28	11,20	18,62	
5	1,80	0,10	0,08	0,0064	0,0100	2,20	4,60	10,55	20,51	
6	1,67	- 0,03	- 0,05	0,0025	0,0009	2,12	4,00	10,20	18,00	
7	1,73	0,03	0,01	0,0001	0,0009	2,25	4,13	10,90	21,30	
8	1,78	0,08	0,06	0,0036	0,0064	2,21	4,60	10,50	21,50	
9	1,76	0,06	0,04	0,0016	0,0036	2,14	4,25	11,70	19,90	
10	1,74	0,04	0,02	0,0004	0,0016	2,18	4,15	10,91	20,30	
11	1,75	0,05	0,03	0,0009	0,0025	2,54	4,17	10,72	18,80	
12	1,65	- 0,05	- 0,07	0,0049	0,0025	2,32	4,10	10,10	18,73	
13	1,82	0,12	0,10	0,0100	0,0144	2,04	3,95	10,60	18,20	
14	1,69	- 0,01	- 0,03	0,0009	0,0001	1,69	4,04	9,53	18,80	
15	1,60	- 0,10	- 0,12	0,0144	0,0100	2,16	4,17	10,43	21,20	
16	1,74	0,04	0,02	0,0004	0,0016	2,05	4,10	9,90	18,60	
p=16	$\frac{=}{x_1} = 1,72$			$\Sigma = 0.0542$	$\Sigma = 0.0622$	$\frac{=}{x_2}$ =2,14	$\frac{=}{x_3}$ =4,16	$\frac{=}{x_4}$ =10,56	$\frac{=}{x_5}$ =19,52	
		$\Sigma = +0.32$				∑=0,69	$\Sigma = 0.80$	∑=1,62	∑=10,48	
		$\overline{d_1} = 0.02$				$\overline{d_2} = 0.04$	$\overline{d_3} = 0.05$	$\overline{d_4} = 0.10$	$\overline{d_5} = 0.66$	
					$S_1 = 0.062$	$S_2 = 0.18$	S ₃ =0,20	S ₄ =0,51	S ₅ =1,36	
·	$x_{1ar.} = 1,70$					$x_2 = 2,10$	$x_3 = 4,11$	$x_4 = 10,46$	$x_5 = 18,87$	

Сравнивали величину \hat{t} с табличным значением квантиля распределения Стъюдента (для двухсторонней вероятности P=0.95 и числа степеней

свободы v = 15, значение t $_{0.95}$ $^{\text{n-1}}$ = 2,13). Поскольку фактическое \hat{t} < t $_{0.95}$ $^{\text{n-1}}$ = 1,33 < 2,13, систематическая составляющая погрешности незначима. В этом случае для вычисления предельной суммарной погрешности анализа (Δ_{Σ}) было рассчитано среднеквадратическое отклонение (S₁) результата анализа образца: S₁ = $\sqrt{0,0622:16}$ = 0,062. Такие же расчеты были проведены и по остальным образцам.

Из приведенных результатов таблицы 1 видно, что между средним квадратическим отклонением и содержанием меди существует зависимость: чем больше содержание элемента, тем больше среднее квадратическое отклонение. Эта зависимость может быть выражена формулой: y = a + bx, где x - c среднее содержание меди, y - c среднее квадратическое отклонение. Для определения "а" и "в" составлена следующая система уравнений:

- $1. \sum y = na + B \sum x,$
- 2. $\sum xy = a\sum x + B\sum x^2$.

Для решения системы уравнений следует использовать данные таблицы 2.

2. Данные для расчета норматива контроля правильности ре-

зультатов измерении									
Число	y (S _i)	X	xy	x ²					
образцов									
1	0,062	1,72	0,1066	2,9584					
2	0,18	2,14	0,3852	4,5796					
3	0,20	4,16	0,8320	17,3056					
4	0,51	10,56	5,3856	111,5136					
5	1,36	19,52	26,5472	381,1030					
Сумма (∑)	2,312	38,10	33,2566	517,4602					
		1							

Значения $\sum y$, $\sum x$, $\sum xy$, $\sum x^2$ подставляем в 1-е и 2-е уравнения

$$2,31 = 5a + 38,10B$$
 | : 5
 $33,25 = 38,10a + 517,46B$ | : 38,10

Для сокращения "а" в уравнениях, 1-е уравнение делим на 5, а 2-е - на 38,10 (на коэффициенты при "а"). Получаем:

0.462 = a + 7.626B 0.872 = a + 13.58B -0.41 = -5.96B0.41 = -5.96 = 0.069

Подставляем значение "в" в одно из уравнений: $0.462 = a + 7.62 \cdot 0.069$;

 $0.462 = a + 7.62 \cdot 0.069$; 0.462 = a + 0.526; a = -0.064.

Подставляем полученные значения коэффициентов регрес-

сии в исходное уравнение и в итоге получаем: $s = 0,069 \, \mathcal{X} - 0,064$.

В качестве норматива контроля правильности измерений принимают предельную суммарную погрешность результатов анализа для двухсторонней доверительной вероятности P=0.95:

$$\Delta_{\Sigma}$$
 = 1,96 s = 1,96 (0,069 $~\mathcal{X}~-$ 0,064); Δ_{Σ} = 0,135 $_{\rm XAT.}$ - 0,125. После округления: Δ_{Σ} = 14 $X_{\rm AT.}$ - 0,12, где $X_{\rm AT.}$ - аттестованное содержание компонента.

Таким образом, проведенная математическая обработка полученных результатов межлабораторных исследований позволила разработать норматив контроля правильности результатов измерений и аттестовать контрольные образцы в качестве отраслевых стандартных образцов. Это дает возможность проводить внутрилабораторный контроль результатов анализа и получить более объективную оценку качества анализируемых объектов.

Литература

1. Самохвалов С.Г., Горшкова Г.И. Методические указания по проведению метрологических исследований агрохимического и зоотехнического анализов. — М.: ЦИНАО, 1986. — С. 12 — 13, С. 19-21. 2. Ведомости результатов анализов контрольных образцов кормов, сельскохозяйственной и пищевой продукции за 2009- 2010 гг. — М.: ВНИИА. 3. ГОСТ Р ИСО 5725 — 6 - 2002. Точность (правильность и прецизионность) методов и результатов измерений, часть 6. Использование значений точности на практике.— Изд-во стандартов, М.: 2002. 4. РМГ 93 — 2009. Рекомендации по межгосударственной стандартизации. Оценивание метрологических характеристик стандартных образцов. Изд-во Стандартинформ, М.: 2011 г.

ИСПОЛЬЗОВАНИЕ СТАНДАРТНЫХ ОБРАЗЦОВ ДЛЯ РАЗРАБОТКИ НОРМАТИВОВ КОНТРОЛЯ ПРАВИЛЬНО-СТИ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

В.Т. Фирсов, к.б.н., Г.А. Ступакова, к.б.н., С.А. Деньгина, Т.Б. Громова, В.Ф. Чиркова, В.М. Иванова, ВНИИА

Контрольные образцы кормов, сельскохозяйственной и пищевой продукции, аттестованные в процессе межлабораторного эксперимента в качестве отраслевых стандартных образцов, можно использовать для разработки норматива контроля правильности результатов измерений. Это позволит проводить более достоверную оценку качества исследуемой продукции растениеводства

Ключевые слова: лаборатория, анализ, корма, сельскохозяйственная и пищевая продукция, стандартный образец, погрешность, правильность, уравнение регрессии.