УДК 631.31.37:631.5

ВЛИЯНИЕ ПРИРОДНОГО ЦЕОЛИТА НА УСЛОВИЯ ПИТАНИЯ РАСТЕНИЙ КОЗЛЯТНИКА ВОСТОЧНОГО И ЕГО УРОЖАЙНОСТЬ

Т.М. Стружкина, к.с.-х.н., Н.Н. Иващенко, Камчатский НИИСХ

Рассмотрено взаимодействие цеолита, извести и минеральных удобрений при внесении под козлятник восточный. Дана химическая характеристика цеолита-клиноптилолита Ягоднинского месторождения на Камчатке. Приведены результаты исследований по влиянию цеолита на плодородие охристой вулканической почвы легкого гранулометрического состава и урожайность кормовой культуры.

Ключевые слова: цеолиты, козлятник восточный, урожайность, удобрения, питательные вещества.

Цеолиты - перспективное средство повышения плодородия почвы. Известны их положительные свойства при использовании в земледелии под различные сельскохозяйственные культуры. Внесенные в почву цеолиты предохраняют от вымывания минеральные удобрения, являются пролонгатарами питательных веществ, благодаря своим ионообменным и сорбционным свойствам [2, 6, 7].

Природные цеолиты обладают способностью адсорбировать влагу, катионы различных металлов и аммония, прочно их удерживать и затем десорбировать в обменных реакциях [5]. Эти свойства цеолитов очень важны для легких супесчаных и легкосуглинистых почв с промывным режимом, составляющих основу земельного фонда Камчатки.

На полуострове Камчатка разведано Ягоднинское месторождение природного цеолита. Комплексом различных аналитических исследований по оценке качества камчатского цеолита установлено, что он относится к одной из наиболее высококачественной разновидности цеолитового сырья. По катионообменной способности (1,68 мг-экв/г), как адсорбционное сырье он относится к первой качественной группе относительно узкопористое, кислотоустойчивое; по минеральному составу - к клиноптилолитовым туфам (70 %).

Химический состав (%): $SiO_2-68,4$; $TiO_2-0,03$; $Ae_2O_3-11,15$; FeO-0,04; CaO-2,15; MgO-0,36; BaO-0,07; $Na_2O-0,69$; $K_2O-4,25$; $P_2O_5-0,03$; $SO_3-0,08$. Содержание токсичных элементов в основном не превышает максимально допустимый уровень кроме кадмия - $(1.4 \times 10^{-4}, \text{ МДУ } 0.4 \times 10^{-4})$. Состав обменных катионов (мг-экв/г): Na-0,22; K-0,067; Ca-0,69; Mg-0,07. Селективные свойства: высокая избирательность к NH_4^{2+} , Sr^{2+} , катионам тяжелых металлов.

Цеолиты испытаны в растениеводстве во многих регионах РФ с положительным результатом по урожайности различных культур [3, 4]. В Республике Саха (Якутия) цеолит испытан на луговых травах: прибавка составила 180 корм. ед. на 1 ц цеолита при рентабельности 168-220% [1]. Его вносили один раз до проведения улучшения травостоя - дискование, подсев трав.

Предпосылкой для использования цеолитсодержащих удобрений в наших условиях была их высокая обменная емкость и селективность к крупным катионам, в том числе к иону аммония, что актуально для почв с низкой поглотительной способностью.

Цель исследований – изучить влияние природного цеолита на условия питания и урожайность козлятника восточного.

Методика. Изучение эффективности цеолита проводили на полях Камчатского НИИСХ. Почва - охристая вулканиче-

ская супесчаная, р $H_{\text{сол.}}$ 6,49, содержание Ca - 6,60, Mg - 0,36, Hg - 3,79 мг-экв/100 г почвы, $P_2O_5 - 6,8$, $K_2O - 6,60$ мг/100 г.

Цеолит вносили в дозах 1; 2 и 4 т/га до посева козлятника одновременно с удобрением ($P_{90}K_{90}$) под предпосевное дискование, в годы пользования в этих же дозах - в подкормке поверхностно. Мелиорант изучали по фону извести (8 т/га) и без известкования.

Результаты и их обсуждение. Внесение цеолита под козлятник значительно влияло на концентрацию питательных веществ в почвенном растворе (табл. 1). При совместном применении мелиоранта с минеральными удобрениями ($P_{90}K_{90}$) и подкормках в годы пользования содержание K_2O , и P_2O_5 в почве в период активной вегетации по дозе 4 т/га в среднем за 3 года было на 34,8 и 35,0 % больше по сравнению с хозяйственным контролем — 11,2 и 13,7 мг/100 г соответственно. При меньших дозах цеолита питательные вещества накапливались менее интенсивно: обменного калия и подвижного фосфора содержалось в почве больше, соответственно, на 19,6 и 16,8 % по сравнению с контролем.

Обеспечение азотным питанием в среднем по вариантам с цеолитом было лучше на 19,7 %. Такие результаты получены на неизвесткованном фоне. На известкованной почве (рН 6,0-6,2) в отношении улучшения питательного режима от использования цеолита эффекта не получено. На окультуренной почве на второй год после внесения цеолита по всем дозам от 1 до 4 т/га отмечается пониженное содержание всех трех элементов питания (NPK) в сравнении с хозяйственным контролем на 1,6; 43,3 и 31,5 % соответственно. Это связано с усилением сорбции цеолитом, ионообменной реакции в этих условиях, а в последующие годы более слабой десорбции, чем на кислой почве.

Этот факт подтверждается увеличенным выносом питательных элементов с урожаем при внесении цеолита в дозах 2 и 4 т/га (табл. 2).

Из данных табл. 2 за 2006 г. (наиболее благоприятный по метеорологическим условиям) видно, что азота в среднем по вариантам цеолит 2 и 4 т/га + $P_{90}K_{90}$ растениями вынесено на известкованной почве 131,1 кг/га, фосфора – 16,6, калия – 141,8 кг/га по сравнению с 157,6; 22,6 и 202 кг/га, соответственно, на почве без известкования. Следовательно, известь в этом случае выступает как антагонист цеолиту - затрудняет ионно-катионный обмен в почвенном растворе и поглощение питательных элементов растениями. Причем ионов кальция в этот период содержалось в почве 9,7-10,4 мг-экв/100 г, без извести – 7,2-8,6 мг-экв/100 г (на 21,8% меньше).

Лучшее обеспечение посевов питательными веществами при использовании цеолита на слабокислой почве способствовало увеличению урожайности трав (табл. 3).

Прибавки урожая к хозяйственному контролю от действия цеолита в дозах 2 и 4 т/га составили 15-36 ц/га (12,4-27,3%) зеленой массы козлятника, или 2,6 и 9,2 ц/га (9,7-19,0%) сухого вещества. Более стабильными они были во второй и третий годы пользования.

Данные урожая на известкованной почве не приводятся, так как прибавок от внесения цеолита не наблюдалось.

1. Динамика подвижных питательных веществ в почве при внесении цеолита и минеральных удобрений под козлятник восточный (период активного роста)

		(1	период ап	CINRHOL	o pocia	,				
	рН _{сол.}	K_2O P_2O_5					N-NO ₃			
Вариант опыта		мг/100 г почвы								
		2005 г.	2006 г.	2007 г.	2005 г.	2006 г.	2007 г.	2005 г.	2006 г.	2007 г.
Неизвесткованный фон										
Контроль (без цеолита	5,5	6,2	6,5	8,5	5,4	12,1	10,9	0,64	8,4	0,28
и удобрений)										
$P_{90}K_{90}$	5,2	11,0	11,0	11,7	9,4	13,9	17,8	0,64	7,2	0,84
Цеолит, т/га: 1	5,3	6,2	7,4	9,4	6,0	15,7	12,9	0,34	8,4	0,16
2	5,2	9,0	7,4	9,4	7,7	14,1	16,3	0,34	5,6	0,12
4	5,3	7,3	7,4	10,1	6,0	14,3	14,0	0,36	4,0	0,40
$1 + P_{90}K_{90}$	5,2	13,2	10,2	16,1	9,9	16,3	22,8	0,40	9,6	0,24
$2 + P_{90}K_{90}$	5,3	12,8	11,9	16,1	7,4	18,4	21,2	1,10	10,4	0,36
$4 + P_{90}K_{90}$	5,4	10,3	13,9	21,0	8,2	21,2	26,2	0,50	11,2	0,36
	Известь, 8 т/га									
Контроль (без цеолита	6,0	5,4	8,6	10,1	7,9	16,1	12,4	1,0	4,8	0,42
и удобрений)										
$P_{90}K_{90}$	5,9	12,4	11,0	15,3	13,4	25,1	19,3	0,64	10,8	0,40
Цеолит, т/га:	5,5	6,2	5,5	8,5	6,9	13,7	16,0	0,64	6,0	0,56
1										
2	6,1	7,3	9,3	14,0	5,1	14,3	15,1	0,36	4,8	0,52
4	6,0	10,3	9,3	12,4	10,4	15,9	17,8	1,36	4,0	0,59
$1 + P_{90}K_{90}$	6,2	8,3	12,4	15,3	7,7	16,6	22,7	0,76	9,6	0,32
$2 + P_{90}K_{90}$	6,0	8,3	11,0	18,2	8,2	17,6	22,7	0,52	11,2	0,40
$4 + P_{90}K_{90}$	6,0	9,0	12,4	13,0	6,9	15,6	22,2	0,62	8,8	0,32

2. Вынос питательных веществ с урожаем козлятника

за два укоса, кг/га (2006 г.)									
Сравниваемые	Неизв	есткова	нный	Известь - фон, 8 т/га					
варианты		фон							
	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O			
Контроль	75,0	7,9	57,9	78,2	9,1	61,5			
(без удобрений)									
P ₉₀ K ₉₀	145,9	20,9	167,2	134,2	19,8	188			
Цеолит, т/га:									
1	80,4	9,4	48,9	77,9	10,5	67,1			
2	75,8	9,9	56,9	72,3	8,4	72,0			
4	80,4	11,1	100,5	99,2	10,8	72,9			
$1 + P_{90}K_{90}$	142,8	14,1	111,7	129,0	16,8	173,4			
$2 + P_{90}K_{90}$	158,2	25,0	198,0	140,2	17,1	154,3			
$4 + P_{90}K_{90}$	157,0	20,2	210,1	122,0	16,1	129,2			

3. Урожайность козлятника восточного, ц/га, в зависимости от агрофона (среднее за 2005-2007 г.)

Вариант опыта	Зеленая масса, ц/га			Сухое вещество, ц/га			
	годы пользования						
	1-й	2-й	3-й	1-й	2-й	3-й	
Контроль	52,5	147,1	79,8	12,9	26,0	15,2	
(без удобрений)							
P ₉₀ K ₉₀ -	120,6	264,0	132,0	26,9	48,3	22,8	
(хозяйст. контроль)							
Цеолит, т/га:							
_1	54,0	144,2	85,3	13,6	28,7	16,4	
2	54,4	148,5	72,9	13,0	31,0	15,5	
4	55,4	156,0	88,6	13,2	30,5	16,9	
$1 + P_{90}K_{90}$	126,4	264,2	161,0	23,7	42,7	31,4	
$2 + P_{90}K_{90}$	131,2	290,3	168,0	27,6	57,5	30,2	
$4 + P_{90}K_{90}$	135,5	286,3	155,6	29,5	54,4	29,6	
HCР₀5, ц/га	16,0	25,0	24,1	3,4	5,0	5,0	

Литература

1. Барашкова Н.В. Агротехнологические основы луговодства на сенокосах и пастбищах Центральной Якутии: Автореф. дис. д-ра с.-х. н. - М., 2003. -45 с. 2. Байраков В.В., Чичинадзе Т.С., Батиашвили Т.В. Оценка потенциально полезных свойств клиноптилолитовых пород в растениеводстве // Примен. природ. цеолитов в животноводстве и растениеводстве/ Тр. конф. и симпоз. по примен. природ. цеолитов в животн. и растениевод. -Тбилиси: Мецниереба, 1984. - С. 226-229. 4. Казак Е.И., Сорочинский В.В., Бульо В.С. Влияние цеолитов на урожай и качество зеленой массы // Корма и кормопроизводство. –

3. Горохов В.Н. Цеолиты на Сахалине. – Владивосток, 1982. - С. 16-17. 1986. - Вып. 21. - С.14-16. 5. Крылова А.И., Вислободская М.М. Цеолиты повышают урожай // Земледелие. - 1987. - №8. - С.56-57. 6. Петункин Н.И. Основные направления и проблемы исследования применения цеолитов в сельском хозяйстве // Теоретич. и прикл. проблемы внедрения прир. цеолитов в нар. хозяйстве РФ. / Докл. респуб. конференции. - СО ВАСХНИЛ. Кемерово, 1988. - С.35-43. 7. Цицишвили Г.О. Перспективы применения цеолитов в сельском хозяйстве. - Тбилиси: Мецниереба. 1980. - С. 132-141.

EFFECT OF NATURAL ZEOLITE ON THE NUTRITION CONDITIONS AND YIELDING CAPACITY OF GALEGA ORIENTALIS

T.M. Struzhkina, N.N. Ivashchenko Kamchatka Research Institute of Agriculture,

Sosnovka, Elizovo raion, Kamchatka oblast, 684033 Russia E-mail: kniishinfo@mail.ru

The interaction of zeolite, lime, and mineral fertilizers applied for eastern galega (Galega orientalis) was analyzed. The chemistry of zeolite-clinoptilolite from the Yagodnoe field, Kamchatka, was characterized. The effect of zeolite on the fertility of light-textured ochreous volcanic soil and the yield of fodder crop was studied.

Keywords: zeolites, Galega orientalis, crop capacity, fertilizers, nutrients.