ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ПРИМЕНЕНИЯ УДОБРЕНИЙ НА ОСНОВЕ ОПТИМИЗАЦИИ СИСТЕМ УДОБРЕНИЯ В СЕВООБОРОТАХ ЦЕНТРАЛЬНОГО ПРЕДКАВКАЗЬЯ (К 40-ЛЕТИЮ СТАЦИОНАРА СтГАУ)

А.Н. Есаулко, д.с.-х.н., Л.Н. Петрова, акад. РАН, В.В. Агеев, д.с.-х.н., Ставропольский ГАУ Россия, 355017, Ставропольский край, г. Ставрополь, пер. Зоотехнический, 12

Дана сравнительная оценка влияния различных систем удобрения и способов обработки почвы на продуктивность севооборота и экономическую эффективность в рамках многолетнего стационара. Приведены основные результаты оптимизации систем удобрения за 1978-2015 гг.

Ключевые слова: многолетний стационар, система удобрения, способы обработки почвы, чернозем выщелоченный, продуктивность культур, прогноз урожайности, севооборот.

Успехи в растениеводческой отрасли в значительной мере определяются показателями, характеризующими уровень эффективного плодородия почв и технологиями возделывания с.-х. культур [3]. Снижение применения минеральных удобрений, сокращение источников традиционных форм органических удобрений, осложняющаяся экологическая обстановка требуют нового подхода к решению проблемы воспроизводства почвенного плодородия и повышению продуктивности пашни [4].

Предлагаемые в настоящее время пути решения этой проблемы целесообразны и реализуемы. Биологизированное земледелие основывается на ряде основополагающих факторов: севообороты, адаптивные виды и сорта полевых культур, дифференцированная обработка почвы, расширение посевов многолетних бобовых трав, биологизированная система удобрения, базирующаяся на минимальном применении промышленных средств химизации и широком внедрении традиционных и нетрадиционных органических удобрений, биологических препаратов [2].

Географическая сеть опытов с удобрениями — важнейшее направление развития агрохимических исследований, научная основа разработки приемов по воспроизводству плодородия почв, повышения продуктивности отечественного земледелия [1].

В 2016 г. стационару кафедры агрохимии и земледелия СтГАУ, представляющему собой длительный опыт «Теоретические и технологические основы биогеохимических потоков веществ в агроландшафтах» и зарегистрированному в реестре аттестатов длительных полевых опытов Геосети Российской Федерации, исполнилось 40 лет.

За это время учеными созданной при нем одноименной научной школы было защищено более 30 кандидатских и 12 докторских диссертаций, опубликовано свыше 500 научных публикаций, монографий и учебников, получено более трех десятков патентов и свидетельств на различные изобретения. Стационар стал центром совместной деятельности не только сотрудников кафедры агрохимии и факультета, но и специалистов и ученых из различных научных учреждений, в том числе ВНИИА им. Д.Н. Прянишникова (академик РАН Сычев В.Г.), Кубанского аграрного госуниверси-

тета (академик РАН, Шеуджен А.Х.), Московского государственного университета им. Ломоносова (академик РАН Минеев В.Г.), ГЦАС «Ставропольский» (профессор Подколзин А.И.) и др.

Методика. С 1976 г. в полевом севообороте стационара изучают влияние систематического ежегодного комплексного применения удобрений, способов обработки почвы на продуктивность сельскохозяйственных культур 8-польного севооборота и плодородие чернозема выщелоченного. От закладки опыта в натуре стационар претерпевал модификации, а всего в нем осуществлено более 18 концептуальных изменений, вызванных состоянием науки и техники экспериментирования. Внесла корректировку и нестабильная экономическая ситуация 90-ых гг., когда из-за диспаритета цен на промышленную и сельскохозяйственную продукцию, стоимость минеральных удобрений и других средств химизации настолько возросла, что они стали труднодоступными для большинства сельскохозяйственных предприятий [4, 5]. В создавшихся условиях особый интерес вызывал поиск менее затратных систем удобрения, в связи с чем с 1999 г. было принято решение об оптимизации ранее исследуемых систем удобрения в севообороте на основе данных, полученных в стационаре за 1976-1999 гг. (табл. 1).

стационарс за 1970-1999 гг. (таол. 1).											
1. Схема стационарного опыта											
	Срок наблюдений /Годы исследования										
Способы и приемы об- работки почвы (для каждой сис- темы удоб- рения)	1-я рота- ция (1978- 1985 гг.)	2-я ротация (1986- 1993 гг.)	Последей- ствие систем удобрения (1994- 1999 гг.)	3-я ротация (2000- 2007 гг.)	4-я рота- ция (2008- 2015 гг.)						
	Система удобрения, насыщенность севооборота NPK, кг/га + навозом, т/га										
1. Отвальный	Контроль (без удобрения)			Контроль (без удобрения)							
2. Безотваль-	Рекомендованная, 60+2,5		Удобре-	Рекомендован- ная, 115 +5,0							
3. Роторный (разноглубинный с 2000 г.)	Балансова: 120 + 5,0	я,	ния не применя- ли	Биологизирован- ная, 63+9,0							
4. Поверхност- ный	Расчетная,	180 +7,5		Расчетная, 171+5,0							

Стационар СтГАУ расположен на Ставропольской возвышенности в зоне неустойчивого увлажнения, согласно схеме агроклиматического районирования Ставропольского края. Средняя многолетняя сумма осадков составляет 557 мм, за вегетационный период выпадает 350-370 мм, среднегодовая температура воздуха 9,2° С. Гидротермический коэффициент — 1,1-1,3. Почва опытного участка — чернозем выщелоченный мощный среднегумусный тяжелосуглинистый. Он характеризуется средними величинами содержания гумуса (5,2-5,9%), нитрификационной способности (16-30 мг/кг), подвижного фосфора (18-28 мг/кг по Мачигину) и повышен-

ным количеством обменного калия (240-290 мг/кг). Реакция почвенного раствора в верхних горизонтах почвы нейтральная - pH 6,2-6,7.

Относительно контроля (без удобрений) с 2000 г. изучались следующие системы удобрения: рекомендованная - с насыщенностью севооборота NPК 115 кг/га в т.ч. $N_{50}P_{59}K_6$ при соотношении N:P:К = 1:1, 18:0,13 + 5 т/га навоза; биологизированная - ориентирована на максимальное использование органических удобрений с насыщенностью севооборота NPK 63 кг/га, в т.ч. $N_{43}P_{20}K_0$ при соотношении N:P:K = 1:0,47:0 + 9 т/га органических удобрений (из них 5 т/га навоз подстилочный); расчетная - запланирована на получение максимально возможной урожайности сельскохозяйственных культур (горохоовсяная смесь – 33 т/га, озимая пшени- μ а – 6,5, озимый ячмень – 5,5, кукуруза на силос – 55, озимая пшеница – 5,5 т/га, горох – 3,3, озимая пшеница -6, яровой рапс -2.2 т/га (с 2008 г. подсолнечник -3т/га). Соотношения и дозы минеральных удобрений устанавливали по результатам текущих анализов и растительной диагностики в соответствии с уровнем программируемой урожайности на основе методик В.В. Агеева (1979) и А.Н.Есаулко (2006) и ежегодно уточняли. Средняя насыщенность в период проведения исследований (2000-2015 гг.) составила – 171 кг/га NPK, в т.ч. $N_{83}P_{76}K_{12}$ при соотношении N:P:K = 1:0,92:0,14 + 5 т/га навоза.

Варианты с изучаемыми согласно схеме опыта системами удобрения накладывали на варианты с различными способами основной обработки почвы: 1 — отвальный; 2 — безотвальный; 3 — разноглубинный; 4 — поверхностная обработка.

Расположение вариантов в повторениях — систематическое последовательное в два яруса с расщепленными делянками. Тип севооборота — зернопропашной со следующим чередованием культур: 1- горохоовсяная смесь (занятой пар), 2 — озимая пшеница, 3 - озимый ячмень, 4 - кукуруза на силос, 5 - озимая пшеница, 6 горох, 7 - озимая пшеница, 8 - подсолнечник, развернут в пространстве и во времени. Общая площадь делянки — 108 м², учетная — 60 м². Повторность опыта трехкратная. Общая площадь стационара - 6,4 га.

Учет урожая зерновых и масличных культур осуществляли методом механизированной уборки, кормовых культур - методом ручной уборки по методике Госсортоиспытания (1971, 1983), перевод урожая сельскохозяйственных культур в сопоставимые показатели - по методикам И.Н. Богданова и др. (1989), И.В. Пустового и др. (1995).

Экономическая эффективность систем удобрения рассчитана по технологическим картам, с использованием действующих нормативных затрат и цен (2009 г.), статистическая обработка экспериментальных данных проведена методом дисперсии и регрессионнокорреляционного анализа (Доспехов, 1985).

Результаты и их обсуждение. Проведенные в 1978-2015 гг. исследования показали, что изучаемые системы удобрения придают севообороту устойчивую продуктивность, сохраняют и повышают плодородие почвы, предопределяют возрастающий тренд продуктивности.

Оптимизация систем удобрения была осуществлена посредством применения расчетных методов определения доз удобрений под программируемую продуктивность севооборота, распределения их по способам удобрения и биологизации систем удобрения. Соотно-

шение N:P:К в системах удобрения, оказывавших различное влияние на оптимизацию агрохимических свойств почвы, под влиянием расчетных методов изменилось с 1:1,23:0,45 (1978 г.) до 1:0,92:0,14 (2015 г.), в биологизированной системе – с 1:1,28:0,39 до 1:0,47:0.

Насыщенность севооборота органическими удобрениями придала почве существенные влагонакопительные функции: нижний предел (5 т/га навоза) - с которого влагонакопительные функции чернозема выщелоченного начинали оптимизироваться, независимо от приемов внесения удобрений в почву; верхний предел (7,5 т/га и более) - эффективность которого определялась приемами и глубиной размещения удобрений в почве.

С точки зрения продуктивности для практики современного земледелия наиболее перспективными, в зависимости от уровня экономики, являются биологизированная и расчетная системы удобрения (табл. 2).

2. Продуктивность зернопропашного севооборота в условиях Пентрального Предкавказья

Центрального Предкавказья										
Система удоб-	Способ	об Продуктивность, т з.е/га								
рения,	обработки	ротации		после-	ротации					
насыщенность севооборота NPK, кг/га + навозом, т/га, (A)	почвы (В)	1-ая (1978- 1985 гг.)	2-ая (1986- 1993 гг.)	действие систем (1994- 1999 гг.)	3-ая (2000- 2007 гг.)	4-ая (2008- 2015 гг.)				
Контроль	Отвальный	3,57	3,54	2,72	3,23	3,40				
	Безотваль- ный	3,34	3,42	2,66	3,09	3,46				
	Роторный	3,44	3,40	2,62	2,99	3,01				
	Поверхно- стная	3,19	3,15	2,46	2,82	2,75				
Рекомендованная, 60+2,5 (1978-1993 гг.) 115+5,0 (2000-2015 гг.)	Отвальный	3,92	3,90	2,87	4,03	4,51				
	Безотваль- ный	3,64	3,77	2,80	3,76	4,27				
	Роторный	3,74	3,71	2,79	3,66	3,95				
	Поверхно- стная	3,46	3,51	2,63	3,36	3,62				
Балансовая, 120+5 (1978- 1993 гг.) Биологизиро- ванная, 63+8,8 (2000-2015 гг.)	Отвальный	4,11	4,12	3,13	3,98	4,40				
	Безотваль- ный	3,85	3,96	3,02	3,72	4,12				
	Роторный	3,94	3,96	3,01	3,64	3,87				
	Поверхно- стная	3,61	3,71	2,79	3,33	3,49				
Расчетная, 180+7,5 (1978-1993 гг.) 171+5,0 (2000-2015 гг.)	Отвальный	4,25	4,11	3,25	4,52	5,33				
	Безотваль- ный	3,97	3,92	3,17	4,22	5,01				
	Роторный	4,07	3,93	3,16	4,14	4,50				
	Поверхно- стная	3,74	3,66	2,91	3,85	4,07				

Тридцативосьмилетние данные, полученные на естественном агрохимическом фоне в связи с изучением способов обработки почвы, однозначно свидетельствует об убывающем тренде продуктивности севооборота. В 1978-2015 гг. способы обработки естественного агрохимического фона формировали практически равную продуктивность севооборота, за исключением поверхностной обработки почвы, которая снижала по сравнению с отвальным способом данный показатель на 0,26-0,65 т з.е/га.

Последействие как прием модификации систем удобрения, разрывающий налаженный круговорот веществ и снижающий продуктивность севооборота на 0,75-0,1 т з.е/га, с трендовой точки зрения не заслуживает внимания и рассматривается нами, как вынужденная мера в земледелии.

Системы удобрения придают севообороту устойчивую продуктивность, сохраняют и повышают плодородие почвы, предопределяют возрастающий тренд продуктивности. С этой точки зрения для практики современного земледелия наиболее перспективны в зависимости от уровня экономики биологизированная и расчетная системы удобрения. Наибольший эффект от взаимодействия систем удобрения и способов обработки почвы получен на расчетной системе удобрения $(N_{86}P_{74}K_{11} + 5,0 \text{ т/га навоза})$ в сочетании с отвальным способом обработки – 5,33т з.е/га. Прибавки от примеудобрения биологизированной системы $(N_{43}P_{20}K_0+8,8 \text{ т/га органических удобрений})$ по сравнению с контролем оказались существенными (1,0; 0,66; 0,86 и 0,48 т з.е/га), а уровень продуктивности севооборота равен полученному от применения рекомендованной системы удобрения ($N_{50}P_{59}K_6 + 5$ т/га навоза).

Установлены связи между продуктивностью севооборота и агрохимическими показателями чернозема выщелоченного. Представленные уравнения регрессии позволяют корректировать дозы применения органических и минеральных удобрений: $\mathbf{Y} = 4,82\mathbf{x}_1 + 0,91\mathbf{x}_2 - 19,25$. Независимо от системы удобрения, содержание в 0-20 см слое почвы минерального азота оказывает определяющее влияние на продуктивность севооборота. С увеличением насыщенности 1 га пашни минеральными и органическими удобрениями (расчетная и балансовая - биологизированная системы удобрения) продуктивность севооборота определяют основные агрохимические показатели:

балансовая (биологизированная) система удобрения: $y = 9,49x_1 + 1,37x_2 - 0,15x_4 + 8,94x_5 - 80,6$, расчетная система удобрения:

 $y = 7,48x_1 + 1,76x_2 - 1,45x_3 + 0,11x_4 - 4,02x_5 - 28,14$, где y -продуктивность севооборота, ц з.е/га; $x_1 -$ содержание гумуса в 0-20 см слое почвы, %; $x_2 -$ содержание минерального азота в 0-20 см слое почвы, мг/кг; $x_3 -$ содержание подвижного фосфора в 0-20 см слое почвы, мг/кг; $x_4 -$ содержание обменного калия в 0-20 см слое почвы, мг/кг; $x_5 -$ реакция почвенного раствора в 0-20 см слое почвы.

Предложены уравнения прогноза урожайности сельскохозяйственных культур для зоны неустойчивого увлажнения Северного Кавказа.

1. Уравнение регрессии для прогноза урожайности озимой пшеницы после

занятого пара: $\mathbf{Y}=35,78+0,03$ $\mathbf{x}_2+0,15\mathbf{x}_4,$ гороха: $\mathbf{Y}=28,56+0,15\mathbf{x}_2+0,12\mathbf{x}_4,$ кукурузы на силос: $\mathbf{Y}=23,39+0,155\mathbf{x}_2+0,106\mathbf{x}_4,$ колосовых: $\mathbf{Y}=20,56+0,062\mathbf{x}_2+0,125\mathbf{x}_4,$

где \mathbf{Y} – урожайность, ц/га; \mathbf{x}_2 – осадки за допосевной период, мм; \mathbf{x}_4 – осадки за осенний период, мм.

2. Уравнение регрессии для прогноза урожайности озимого ячменя после колосовых:

$$Y = -0.40x_1 + 2.46x_2 + 2.60x_4 - 3.35x_5 - 58.35$$

где \mathbf{y} – урожайность, ц/га; \mathbf{x}_1 – осадки за допосевной период, мм; \mathbf{x}_2 – осадки за осенний период, мм; \mathbf{x}_4 – осадки за межфазный период кущение – колошение, мм; \mathbf{x}_5 – осадки за межфазный период колошение – полная спелость, мм.

3. Уравнение регрессии для прогноза урожайности гороха:

$$\mathbf{Y} = 12,45 + 0,08\mathbf{x}_2 - 0,07\mathbf{x}_3 + 2,4\mathbf{x}_{10}$$

где \mathbf{Y} – урожайность гороха, ц/га; \mathbf{x}_2 – осадки за допосевной период, мм; \mathbf{x}_3 – количество осадков от посева

до цветения, мм; $\mathbf{x}_{10} - \Gamma T K$ от цветения до уборки урожая

4. Уравнение для прогноза урожайности маслосемян подсолнечника:

$$Y = 26.58 + 0.05x_3 - 0.07x_5 - 0.13x_8$$

где \mathbf{y} — урожайность маслосемян подсолнечника, ц/га; $\mathbf{x_3}$ — осадки от посева до уборки, мм; $\mathbf{x_5}$ — осадки от цветения до уборки урожая, мм; $\mathbf{x_8}$ — осадки в период цветения, мм.

Для оптимизации систем удобрения с целью получения программируемой урожайности культур и продуктивности севооборота предпочтителен метод расчета доз удобрений В.В. Агеева в нашей модификации; в процессе проведения научных и производственных исследований уточнены коэффициенты использования растениями элементов питания из почвы и удобрений. Апробация метода расчета систем удобрения под программируемую продуктивность севооборотов осуществлялась в сельскохозяйственных предприятиях Ставропольского края и сопредельных территориях Центрального Предкавказья на площади 120-160 тыс. га со среднегодовым экономическим эффектом 2800-4400 руб/га. Расчет экономических показателей в ценах 2015 г. показал, что оптимизация систем удобрения (2000-2015 гг.) способствовала повышению экономической эффективности и наиболее эффективными оказались малозатратная биологизированная и высокопродуктивная расчетная системы удобрения.

Заключение. В целях сохранения почвенного плодородия, получения среднегодовой продуктивности зернопропашного севооборота 3,5-4,4 т з.е/га рекомендуется биологизированная система удобрения с насыщенностью 1 га севооборотной площади $N_{43}P_{20}K_0 + 8,8$ т органических удобрений, а для получения программируемой урожайности сельскохозяйственных культур и продуктивности севооборота 4,5-5,3 т з.е/га предпочтительна расчетная система удобрения с насыщенностью 1 га севооборотной площади $N_{86}P_{74}K_{11} + 5,0$ т навоза

На черноземах выщелоченных рекомендуют отвальный и безотвальный способы обработки почвы на глубину 20-22 см, обеспечивающие оптимальное агрохимическое состояние почвы, максимальную продуктивность культур севооборота и наивысший экономический эффект.

Расчет доз удобрений под программируемую урожайность культур и продуктивность севооборота необходимо проводить по методике кафедры агрохимии СтГАУ, которая обеспечивает оправдываемость программирования урожайности 79-96%.

1. Минеев, В.Г. Значение географической сети опытов с удобрениями в решении актуальных проблем агрохимии / В.Г. Минеев // Материалы Всероссийской научно-методической конференции «Совершенствование организации и методологии агрохимических исследований в Географической сети опытов с удобрениями». - М.: ВНИИА, 2006.-С.6-8. 2. Сычев. В.Г. Состояние и перспективы развития агрохимических исследований в географической сети опытов с удобрениями / В.Г. Сычев, В.А. Романенков // Материалы Регионального научнометодического совещания ученых-агрохимиков Географической сети опытов с удобрениями Северного Кавказа. - М.: ВНИИА, 2007. - С. 14-25. 3. Сычев, В.Г. Географической сети опытов с удобрениями - 75 лет / В.Г. Сычев // Плодородие. - 2016. - № 1 (88). - С. 2-4. 4. Шеуджен, А.Х. Влияние длительного применения удобрений на плодородие и физико-химические свойства чернозема выщелоченного Западного Предкавказья/ А.Х. Шеуджен, Л.М. Онищенко, Ю.А. Исупова // Труды Кубанского государственного аграрного университета. – 2012. - №36. - C. 95-99.

IMPROVING THE EFFICIENCY OF FERTILIZERS BY THE OPTIMIZATION OF FERTILIZING SYSTEMS IN CROP ROTATIONS OF CENTRAL CAUCASUS (TO THE 40TH ANNIVERSARY OF THE STAVROPOL AGRARIAN UNIVERSITY RESEARCH STATION)

A.N. Esaulko, L.N. Petrova, V.V. Ageev, Stavropol State Agrarian University, per. Zootechnical 12, Stavropol, Russia E-mail: aesaulko@yandex.ru

The effects of different fertilizing systems and methods of cultivation on the productivity of crop rotation and the economic efficiency of fertilizing systems were compared within a long-term field experiment at the Research Station. The main results of the optimization of fertilizing systems in the period from 1978 to 2015 are presented.

Keywords: long-term field experiment, fertilizing system, soil tillage methods, leached chernozem, crop productivity, crop yield forecast, crop rotation.

УДК 631.8:633.16

ФОТОСИНТЕТИЧЕСКАЯ ДЕЯТЕЛЬНОСТЬ ПОСЕВОВ ЯРОВОГО ЯЧМЕНЯ ПРИ ИСПОЛЬЗОВАНИИ МИНЕРАЛЬНЫХ УДОБРЕНИЙ И БИОПРЕПАРАТА

А.Ю. Гаврилова, Смоленский НИИСХ, Л.С. Чернова, к.с.-х.н., А.А. Завалин, д.с.-х.н., ВНИИА 214025, Смоленск, улица Нахимова, 21. E-mail: smniish@yandex.ru 127550, Москва, улица Прянишникова, 31a. E-mail: bioazot@mail.ru

Рассматривается влияние минеральных удобрений и микробного препарата БисолбиФит, созданного на основе ризосферных азотфиксирующих бактерий Bacillus subtilis Ч - 13, на развитие листовой поверхности растений, фотосинтетический потенциал посевов, чистую продуктивность фотосинтеза и урожайность ярового ячменя в условиях Нечернозёмной зоны России.

Ключевые слова: яровой ячмень, минеральные удобрения, БисолбиФит, урожайность, площадь листьев, фотосинтетический потенциал посевов, чистая продуктивность фотосинтеза.

Урожай создается в процессе фотосинтеза, когда в зеленых растениях образуется органическое вещество из диоксида углерода, воды и минеральных веществ. Энергия солнечного луча переходит в энергию растительной биомассы. Так, в процессе фотосинтеза за счёт углерода формируется 42-45% массы сухого органического вещества. Эффективность этого процесса и в итоге урожай зависят от функционирования посева как фотосинтезирующей системы.

Главной задачей получения высокого урожая является создание такого посева, в котором бы максимально раскрывались потенциальные возможности фотосинтетической деятельности растений в агроценозе. Этого можно добиться при создании благоприятных условий для роста и развития растений. Фотосинтетическая деятельность растений в посевах включает ряд важнейших показателей: площадь листьев, фотосинтетический потенциал и чистую продуктивность фотосинтеза [9, 10].

Чаще всего факторами, снижающими урожай, являются недостаточно быстрый рост листовой поверхности и ограниченные размеры листа. От размеров и пространственной структуры листового аппарата зависит количество поглощаемой посевами энергии. Вместе с тем, рост урожая не всегда пропорционален росту листовой поверхности, а только при увеличении её до определённых размеров, после чего он прекращается [4].

Наивысшие и наилучшие по качеству урожаи могут быть сформированы посевами с оптимальной площадью листьев, при этом важно, чтобы она быстро нарастала до максимальной величины и долго удерживалась на достигнутом уровне без резкого снижения к концу вегетации, максимально поглощая солнечную радиацию. Величина площади листьев слагается из площади листьев отдельных растений и в разной степени зависит от периода вегетации, погодных условий выращивания, обеспеченности растений питательными веществами. Считается, что для эффективного усвоения солнечной энергии посевы должны сформировать не менее 40-50 тыс. м² листовой поверхности на 1 га земельной площади [1, 5].

Цель исследований - изучить влияние минеральных удобрений и биопрепарата на формирование оптимальной листовой поверхности и другие показатели фотосинтеза и на получение максимального урожая ячменя в условиях Нечернозёмной зоны Российской Федерации.

Методика. Исследования проводили в 2011-2013 гг. на опытном поле Смоленского НИИСХ на дерновоподзолистой легкосуглинистой почве. Содержание гумуса в пахотном слое 2,0%, р $H_{\rm KCI}$ - 5,4, содержание минерального азота - 21-23 мг/кг почвы, подвижного калия (по Кирсанову) — 106-108, подвижного фосфора (по Кирсанову) на фоне I - 40-45, на фоне II — 166-170 мг/кг почвы. Полевой мелкоделяночный опыт проводили согласно методике, применяемой в Географической сети опытов ВИУА [6, 8].

Культура - яровой ячмень сорта Гонар. Повторность опыта пятикратная. Посевная площадь делянки - 5 $\,\mathrm{m}^2$, учётная - 4 $\,\mathrm{m}^2$. Посев проводили из расчета 500 семян на 1 $\,\mathrm{m}^2$, что соответствует 5 млн шт/га. В опыте изучали четыре комплексных удобрения: аммофос (АФ 12% N, 52% $\mathrm{P}_2\mathrm{O}_5$), азофоски с разным содержанием элементов питания N:P:K (АЗФК 13:19:19) и (АЗФК 15:15:15) и диаммофоску (ДАФК 10:26:26). Дозы удобрений, эквивалентные внесению $\mathrm{N}_{45}\mathrm{P}_{45}\mathrm{K}_{45}$, кроме аммофоса ($\mathrm{N}_{45}\mathrm{P}_{45}$), рассчитывали по фосфору (4,5 г/м²), вносили весной вручную под предпосевную культивацию. Эффективность минеральных удобрений оценивали на двух фонах, различающихся по обеспеченности почвы подвижным фосфором. На каждом из них изучали эффективность применения микробного