листьев ЧПФ начинала уменьшаться из-за затенения нижних листьев.

Выводы. Обработка минеральных удобрений биопрепаратом БисолбиФит способствовала улучшению фотосинтетической деятельности посевов ярового ячменя, повышая ассимиляционную поверхность листьев в среднем на 0.04-0.07 м 2 /м 2 (1.3-7.0%), а урожайность на 12-52 г/м 2 (7-20%) на почве с низкой и на 21-50 г/м 2 (10-17%) с высокой обеспеченностью подвижным фосфором. Установлена высокая корреляционная зависимость между листовой поверхностью и урожайностью ячменя (r = 0.92-0.94).

Литература

- 1. *Андрианова, Ю.Е.* Хлорофилл и продуктивность растений [Текст] / Ю.Е. Андрианова, И.А.Тарчевский. М.: Наука, 2000. 135 с.
- Завалин, А.А. Биологизация минеральных удобрений как способ повышения эффективности их использования [Текст] / А.А. Завалин [и др.] // Достижения науки и техники АПК. - 2012. - № 9. - С. 45-47.

3. Завалин, А.А. Биопрепараты, удобрения и урожай [Текст] / А.А. Завалин. - М.: ВНИИА, 2005. - 302 с. 4. Мокроносов, А.Т. Фотосинтез. Физиолого - экологические и биохимические аспекты [Текст] / А.Т. Мокроносов, В.Ф. Гавриленко, Т.В. Жигалова. - М.: Академия. 2-е изд., испр. и доп., 2006. - 448 с. 5. Ничипорович, А.А. Фотосинтетическая деятельность растений в посевах [Текст] / А.А. Ничипорович [и др.] - М.: Изд-во АН СССР, 1961. 6. Оценка эффективности микробных препаратов в земледелии / Под общ. ред. А.А. Завалина. - М.: РАСХН, 2000. - 82 с. 7. Петров В.Б., Чеботарь В.К., Казаков А.Е. Микробиологические препараты в биологизации земледелия России // Достижения науки и техники АПК. - 2002. -№10. - С. 16-20. 8. Программа и методика исследований в географической сети полевых опытов по комплексному применению средств химизации в земледелии. - М.: ВИУА, 1990. - 187 с. 9. Физиология и биохимия сельскохозяйственных растений [Текст]: учеб. пособие / Под ред. Н.Н. Третьякова. - 2-е изд. - М.: КолосС,

9. Физиология и биохимия сельскохозяйственных растений [Текст]: учеб. пособие / Под ред. Н.Н. Третьякова. - 2-е изд. - М.: КолосС, 2005. - 656 с. 10. Частная физиология полевых культур [Текст]: Учеб. пособие / Под ред. Е.И. Кошкина. - М.: КолосС, - 2005. - 344 с. 11. Шуреков Ю.В., Даньков Д.Б., Кочетов В.М. Бисолбифит - перспективная новинка на рынке биопрепаратов // ПоволжьеАгро. - 2011. - №4. - С. 28-29.

PHOTOSYNTHETIC ACTIVITY OF SPRING BARLEY PLANTS AT THE USE OF MINERAL FERTILIZERS AND BIO-PREPARATION

A.Yu. Gavrilova¹, L.S. Chernova², A.A. Zavalin²

¹Smolensk research institute of agriculture, ul. Nahimova 21, Smolensk, 214025 Russia E-mail: smniish@yandex.ru

² Pryanishnikov All-Russian Scientific Research Institute of Agrochemistry, Russian Academy of Sciences, ul. Pryanishnikova 31a,

Moscow, 127550 Russia E-mail: bioazot@mail.ru

The effect of mineral fertilizers and microbial preparation BisolbiFit prepared from rhizospheric nitrogen-fixing bacteria Bacillus subtilis strain H-13 on the development of plant leaf surface, photosynthetic potential, net photosynthetic productivity, and grain yield of spring barley was studied under conditions of the Nonchernozemic zone.

Keywords: spring barley, mineral fertilizers, BisolbiFit, crop yield, leaf surface area, photosynthetic potential of plants, net photosynthetic productivity.

УДК 631.674:635.25

ВЛИЯНИЕ РЕЖИМА ОРОШЕНИЯ И ДОЗ УДОБРЕНИЙ НА ПРОДУКТИВНОСТЬ КАРТОФЕЛЯ ЛЕТНЕЙ ПОСАДКИ В НИЖНЕМ ПОВОЛЖЬЕ

В.В. Бородычев, акад. РАН, ВНИИГиМ, Т.Н. Дронова, д.с.-х.н., А.А. Дергачев, И.А. Дергачева, ВНИИОЗ

Показано влияние условий водного и пищевого режимов почвы на продуктивность картофеля летних посадок при капельном орошении, обеспечивающих получение высококачественного посадочного материала с урожайностью клубней 20-40 m/га.

Ключевые слова: картофель, летние посадки, режим орошения, дозы удобрений, урожайность, качество.

Картофель в России используют для питания круглогодично. В условиях Нижнего Поволжья на орошении он формирует высокие урожаи и является одной из высокорентабельных культур [1, 2, 10]. Но система семеноводства, сложившаяся в регионе, базируется на импортных семенах, в связи с чем резко возрастают затраты на возделывание этой культуры. Усугубляется положение тем, что по действующим правилам семеноводства посадочный материал необходимо приобретать на всю площадь посадки [1, 5, 6].

Альтернативой такому положению, по исследованиям ВНИИОЗ [3, 6, 9], является размножение завозных семян летними посадками. Доказано, что клубни, полученные от растений, вегетация которых сдвигается на июль-сентябрь, могут в течение 3-5 лет оставаться здоровыми и сохранять потенциал продуктивности.

В последние годы в институте проводят исследования по разработке и совершенствованию режимов оро-

шения, системы минерального питания, подбора адаптивных сортов при летних посадках, обеспечивающих получение оздоровленного семенного материала по цене и качеству, не уступающего импортному.

Исследования проводятся в трехфакторных полевых опытах на светло-каштановых почвах в ФГУП «Орошаемое». Содержание гумуса в почвах опытного участка - от 1,42 до 1,70%, подвижного фосфора -13,0-26,7, обменного калия 220-250 мг/кг. Наименьшая влагоемкость в слоях 0,4 м составляет 23,2 %, 0,6 м - 22,2%, плотность почвы, соответственно, 1,34 и 1,37 т/м 3 .

По фактору А (режим орошения) изучают четыре варианта с поддержанием предполивного порога увлажнения: 80% НВ в слоях 0,4 и 0,6 м в течение всей вегетации; 80% НВ в слое 0,4 м от посадки до бутонизации; 80% НВ в слое 0,6 м до конца вегетации; 80% НВ в слое 0,4 м до фазы бутонизации и 70% НВ в слое 0,6 м до конца вегетации.

По фактору В (пищевой режим) изучают дозы удобрений, рассчитанные на получение урожайности 30 и $40\ \text{т/ra}$, на контроле (без удобрений) – $20\ \text{т/ra}$.

Фактор C (сортовой состав) включает сорта Романо и Роко. Опыты закладывали и проводили по общепринятым методикам [4,7,8].

Агротехника в опытах базировалась на голландской технологии по уходу за полем и включала (на фоне осенней отвальной вспашки): обработку доминатором Румпстад после внесения удобрений, формирование гребней культиватором КР-3, посадку картофеля картофелесажалкой VL20KLZ с одновременной обработкой клубней инсектицидом Престиж. Междурядные обработки осуществляли пропашной фрезой RF-4, при этом формировался гребень высотой 0,22-0,25 м, а сорняки засыпались почвой. По всходам картофеля обрабатывали гербицидом Зенкор, при появлении личинок колорадского жука применяли инсектициды Танрек и Сектин.

В опыте использовали капельные линии «Нетафим», проложенные через 0,75 м по гребню.

Анализируя полученные данные, следует отметить, что на посевах картофеля в условиях жаркой и сухой погоды в период проведения исследований число поливов по вариантам опытов и годам изменялось от 14-15 до 16-27, оросительная норма - от 1400-2040 до 2500-2700 м³/га. Суммарное водопотребление картофеля в среднем за годы исследований составило 3216-3618 м³/га. При этом самые высокие оросительная норма и суммарное водопотребление (2700 и 3742 м³/га) сложились в 2015 г. в варианте с поддержанием предполивной влажности почвы 80% НВ в слое 0,4 м в течение вегетации. Примерно такие же величины получены и в варианте при поддержании 80%-ного порога увлажнения в слое 0,4 м до фазы бутонизации и 80% НВ в слое 0,6 м от фазы бутонизации до уборки картофеля.

В среднем за годы исследований в этих вариантах заданный предполивной порог поддерживался проведением 16-25 поливов поливной нормой 100-140 м³/га. При этом в структуре суммарного водопотребления оросительная норма составила 63,6 и 60,5%, при поддержании 80%-ного порога в течение вегетации - 57,5, а при дифференциации режима орошения и слоя увлажнения (80% НВ в слое 0,4 м, 70% НВ в слое 0,6 м) — 54,9%.

При определении таких важных показателей водного баланса культуры, как коэффициент водопотребления (табл. 1) и затраты воды на формирование урожая, выяснилось, что внесение удобрений значительно снижало их.

1. Коэффициент водопотребления картофеля в зависимости от условий водного и пищевого режима почвы, м³/га (в среднем за 2014-2016 гг.)

Поддержа-		Романо		Роко			
ние предполивной влажности, %НВ в слое почвы, м	удобре- ний	N ₁₅₀ P ₆₀ K ₁₃₅	$N_{190}P_{80}K_{180}$	Без удобре- ний	N ₁₅₀ P ₆₀ K ₁₃₅	N ₁₉₀ P ₈₀ K ₁₈₀	
80, h 0,6	230	150	110	200	125	102	
80, h 0,4	215	140	109	195	140	95	
80,h 0,4-0,6	226	147	118	205	125	98	
80, h 0,4, 70, h 0,6	228	158	125	210	140	105	

Расход оросительной воды на формирование урожая также уменьшался с улучшением условий увлажнения и пищевого режима и на контроле составил $114-138 \text{ m}^3/\text{T}$, на I фоне удобрений - 75-90 и на II фоне $-62-73 \text{ m}^3/\text{T}$.

Установлено, что урожайность изучаемых сортов картофеля в значительной степени определяется условиями минерального питания. На фоне естественного плодородия почвы в среднем по годам исследований она изменялась по всем режимам орошения от 12,5 до 17,2 т/га. Внесение $N_{150}P_{60}K_{135}$ и $N_{190}P_{80}K_{180}$ способствовало увеличению продуктивности (табл.2).

Максимально высокие урожаи сортов Романо и Роко формировались в варианте с поддержанием предполивного порога влажности 80%HB в слое 0,4 м в течении вегетации и внесении $N_{190}P_{80}K_{180}$.

Поддержание предполивной влажности 80% НВ в слое 0,6 м в течение вегетации способствовало формированию на контроле в среднем 12,5-14,0, в удобренных вариантах - 20,3-29,7 т/га. Примерно такой же продуктивностью характеризовались посевы в варианте промачивания 0,4 м слоя почвы до фазы бутонизации (80% НВ) и до 0,6 м от бутонизации до конца вегетации (70% НВ).

Сорт Роко во все годы исследований имел достоверное преимущество перед сортом Романо, урожайность его на удобренных вариантах была на 11,8-21,5% выше.

Качество урожая оценивали по содержанию в клубнях сухих веществ, крахмала, витамина С и нитратов. Эти показатели увеличивались в удобренных вариантах по сравнению с естественным фоном плодородия почвы.

2. Урожайность картофеля в зависимости от режимов орошения и доз удобрений, т/га

2. у рожаиность картофели в зависимости от режимов орошении и доз удоорении, т/га											
Предполив.	Расчетные дозы	Сорт (фактор С)									
влажность, %НВ в	удобрений (фак-		Романо				Роко				
слое почвы, м	тор В)	2013 г.	2014 г.	2015 г.	2016 г.	в сред.	2013 г.	2014 г.	2015 г.	2016 г.	в сред.
80, h 0,6	Без удобр.	11,8	12,1	12,8	13,2	12,5	13,3	13,8	14,2	14,6	14,0
	$N_{150}P_{60}K_{135}$	17,9	18,1	23,1	22,0	20,3	20,7	22,3	27,5	25,7	24,0
	$N_{190}P_{80}K_{180}$	22,3	24,2	29,2	27,7	25,8	25,7	27,1	34,7	31,2	29,7
80, h 0,4	Без удобр.	13,2	13,8	15,7	16,5	14,8	15,4	16,1	18,3	19,1	17,2
	$N_{150}P_{60}K_{135}$	21,3	21,1	28,2	26,9	24,9	24,2	26,2	35,4	33,6	29,8
	$N_{190}P_{80}K_{180}$	25,5	27,5	35,9	34,6	30,9	30,6	32,5	43,6	40,8	36,9
80, h 0,4-0,6	Без удобр.	12,4	13,4	14,1	15,3	13,8	14,0	14,5	15,9	17,8	15,6
	$N_{150}P_{60}K_{135}$	19,6	20,5	26,1	24,7	22,7	22,4	24,3	31,7	30,8	27,3
	$N_{190}P_{80}K_{180}$	24,1	25,2	33,3	32,5	28,8	27,8	28,2	39,4	37,5	33,2
80, h 0,4; 70, h 0,6	Без удобр.	12,0	12,2	13,3	13,9	12,8	12,1	13,1	14,7	15,9	14,0
	$N_{150}P_{60}K_{135}$	17,4	17,7	23,6	23,1	20,5	18,9	20,1	28,9	26,6	23,6
	$N_{190}P_{80}K_{180}$	20,9	21,3	31,5	29,3	25,8	24,2	25,4	31,5	32,4	28,4
	фактор А	1,6	1,7	2,3	2,5		1,6	1,7	2,3	2,5	
HCP ₀₅	фактор В	1,9	2,0	4,0	4,3		1,9	2,0	4,0	4,3	
	фактор С	1,5	1,5	1,7	2,0		1,5	1,5	1,7	2,0	

Заметных различий по этим показателям в зависимости от режима увлажнения не отмечено, по сорту Роко

наблюдалась тенденция к несколько большему накоплению сухих веществ, крахмала и витамина С (табл.3).

3. Биохимический состав клубней (в среднем за 2014-2016 гг.)

Предполив.	Расчетные		Po	омано	•	Роко				
влажность,	дозы удобре-	сухих	витамин С,	крахмал, %	нитраты,	сухих ве-	витамин С,	крахмал, %	нитраты,	
%НВ в слое	ний (фактор	веществ,	мг%/100 г		мг/кг сырой	ществ, %	мг%/100 г		мг/кг сырой	
почвы, м	B)	%			массы				массы	
80, h 0,6	Без удобр.	19,5	15,8	13,0	65	20,8	16,0	14,5	64	
	$N_{150}P_{60}K_{135}$	21,4	15,8	13,3	90	21,8	16,0	14,8	69	
	$N_{190}P_{80}K_{180}$	22,6	16,1	13,6	102	23,2	16,8	15,3	97	
80, h 0,4	Без удобр.	19,9	14,9	14,6	80	21,6	15,4	15,0	75	
	$N_{150}P_{60}K_{135}$	21,6	16,0	15,2	92	22,4	16,5	16,0	90	
	$N_{190}P_{80}K_{180}$	23,0	16,2	14,0	97	23,5	16,8	16,8	100	
80, h 0,4-0,6	Без удобр.	20,3	14,8	13,7	80	21,5	15,0	15,1	75	
	N ₁₅₀ P ₆₀ K ₁₃₅	21,2	16,0	14,7	97	22,0	15,5	16,0	95	
	$N_{190}P_{80}K_{180}$	20,5	15,8	15,0	106	22,8	16,1	16,0	109	
80, h 0,4; 70, h 0,6	Без удобр.	19,4	15,5	13,7	67	20,7	15,5	14,5	75	
	N ₁₅₀ P ₆₀ K ₁₃₅	20,4	15,8	14,0	92	21,7	16,1	16,0	90	
	N ₁₉₀ P ₈₀ K ₁₈₀	21,8	16,1	15,0	107	22,0	16,5	16,0	98	

Внесение удобрений на всех режимах орошения способствовало увеличению содержания нитратов в клубнях, но их содержание (64-109 мг/кг) не превышало ПДК (200 мг/кг).

Возделывание картофеля летней посадки при капельном орошении в регионе экономически эффективно. Затраты на технологию составляют 40-50 тыс. руб/га, а стоимость продукции - от 100 до 200 тыс. руб/га. Рентабельность производства оздоровленного семенного материала превышает 250-400%.

Выводы. Агроклиматические условия Нижнего Поволжья соответствуют биологическим требованиям картофеля, возделываемого на орошаемых землях при летнем сроке посадки. Поддержание предполивного порога влажности почвы на уровне 80%HB в слое почвы 0,4 м в сочетании с внесением расчетных доз удобрений $N_{150-190}P_{60-80}K_{135-180}$ обеспечивает получение максимальных урожаев $(24,9-36,9\,$ т/га) оздоровленных клубней.

Внесение удобрений на всех режимах орошения способствовало повышению качества клубней: количество сухих веществ, витамина С и крахмала увеличивалось. Содержание нитратов во всех вариантах опыта не превышало ПДК (65-109 мг/кг).

Литература

1. Бородычев, В.В. Современные технологии капельного орошения овощных культур/В.В. Бородычев. - Волгоград, 2010.- С. 213-219.

- 2. Гамаюнова, В.В. Продуктивность картофеля летней посадки при капельном орошении в зависимости от фона питания и сорта/В.В. Гамаюнова, О.Ш. Искакова//Материалы международной научнопрактической конференции «Борьба с засухой и урожай». Волгоград: ВолГАУ, 2015. С. 391-397.
- 3. Дергачева, И.А. Совершенствование агротехнических приемов возделывания картофеля летних посадок при капельном орошении/И.А. Дергачева, А.А. Дергачев, Е.А. Стрижакова//Экологическое состояние природной среды и научно-практические аспекты современных мелиоративных технологий: сб. науч. тр. Тверь, Рязань, 2014. С. 275-286.
- 4. Доспехов, Б.А. Методика полевого опыта / Б.А. Доспехов. М. :Колос, 1985. 351 с.
- 5. Дронова, Т.Н. Технология выращивания летнего картофеля при капельном орошении/Т.Н. Дронова, И.А. Дергачева//Сб. научных трудов межд. н.-п. конференции «Проблемы рационального использования природо-хозяйственных комплексов засушливых территорий».- Волгоград, 2015. С. 286-290.
- 6. *Дронова*, *Т.Н.* Технология выращивания летнего картофеля при капельном орошении/Т.Н. Дронова, И.А. Дергачева, А.А. Дергачев//Научно-практический журнал. 2016. №1. С. 40-43.
- 7. *Методика* полевого опыта в условиях орошения. Волгоград: ВНИИОЗ. 1983.—56 с.
- 8. *Методика* полевого опыта в овощеводстве. -: М.: ВНИИ овощеводства, 2011.-648 с.
- 9. Навитная, А.А. Перспективы использования картофеля в условиях Нижнего Поволжья/А.А. Навитная, И.А. Дергачева//Научные основы эффективного использования орошаемых земель аридных территорий России. Волгоград, 2007. С. 60-70.
- 10. *Щербакова, Н.А.* Формирование элементов продуктивности картофеля в зависимости от обработок различными препаратами в аридных условиях Нижнего Поволжья/Н.А. Щербакова, Н.В. Тютюма//Известия Нижневолжского агроуниверситетского комплекса. 2014.-№1.- С. 107-112.

EFFECT OF IRRIGATION AND FERTILIZER RATES ON THE YIELD OF SUMMER-PLANTED POTATOES IN THE LOWER VOLGA REGION

V.V. Borodychev¹, T.N. Dronova², A.A. Dergachev², I.A. Dergachev²

¹Volgograd Branch, Kostyakov All-Russian Research Institute of Hydraulic Engineering and Land Reclamation, Russian Academy of Agricultural Sciences, ul. Timiryazeva 9, Volgograd, 400002 Russia

²All-Russian Research Institute of Irrigative Agriculture ul. Timiryazeva 9, Volgograd, 400002 Russia

The effect of water and nutrient regimes of soil on the productivity of summer-planted potato under sprinkling irrigation was studied to ensure the production of highly productive planting material with a tuber yield of 20–40 t/ha.

Keywords: potato summer planting, irrigation regime, fertilizer rates, crop yield, crop quality.