(10-25%).) 1,10%, $P_2O_5 - 13-14$ ($K_2O - 320-335$ () / 8,4. (: 1)), 2) P_{30} , 3) P_{60} , 4) P_{90} , 5) N_{30} , 6) $P_{30} + N_{30}$, 7) $P_{60} + N_{30}$, 8) P_{90} $+\ N_{30},\ 9)\ P_{30}\ _{30}+N_{30},\ 10)\ P_{60}\ _{30}+N_{30},\ 11)\ P_{90}\ _{30}+N_{30}.$ 5-11 N_{30} ; 2) _{60 30} – : 1) ; 3) $+ N_{30}$; 4) $+ N_{30}$; 5) $+ N_{30}$; 6) 100 ², $+ N_{30}$ $+N_{60}$ -40^{-2} , -3,0[1]. 1-1,5% 3-4% 2009 . 2010 . - 313,7 99,6% 2010 . 1,1° 2,3°, , 2009 2010 . [3, 4]. - 35,5 / .1). P₆₀ 4,0 / 46 / . 5) N_{30} 8,8 / , 3,8 / (10,7%) 29,5 / , 1,8 [2]. N_{30} (. 6, 7) 30, 60 14,6 19,4%. 50,3 / 80 / 90 . 8), 11,5% - 4,1 /

4•2011

2009-2010 .

	1.										
						I					
/											
,		-	-				-		-	-	, /
		, /								, %	
1		35,5	-	1,74	0,41	0,58	9,7	52,3	23	44	648
2	P ₃₀	37,5	2,0'	1,76	0,53	0,63	10,1	54,8	25	53	671
3	P ₆₀	39,5	4,0	1,75	0,59	0,65	10,4	55,3	26	58	683
4	P ₉₀	38,9	3,4	1,69	0,57	0,63	10,0	52,7	24	56	680
5	N_{30}	39,3	3,8	2,42	0,40	0,62	13,4	53,6	26	51	670
6	$N_{30}P_{30}$	40,7	5,2	2,51	0,60	0,64	13,8	55,8	28	62	680
7	$N_{30}P_{60}$	42,4	6,9	2,59	0,62	0,64	13,6	56,7	28	60	701
8	$N_{30}P_{90}$	39,6	4,1	2,53	0,58	0,65	12,8	55,6	26	58	690
9	$N_{30}P_{30}K_{30}$	44,2	8,7	2,61	0,63	0,89	14,7	56,8	30	64	715
10	$N_{30}P_{60}K_{30}$	41,3	5,8	2,53	0,59	0,88	14,3	55,9	27	60	700
11	$N_{30}P_{90}K_{30}$	40,4	4,9	2,47	0,57	0,88	14,3	56,7	28	61	705
05		0,7		•				•			

, . .

,

26

28%,

2.											
							-				
		/ ,	,						-	- , %	/
1.		31,8	-	1,74	0,41	0,58	9,90	51,6	26	20	633
2. P ₆	₅₀ K ₃₀ -	36,6	4,8	1,75	0,47	0,63	9,97	52,4	28	33	645
3.	+ N ₃₀ -	38,3	6,5	1,95	0,46	0,65	10,37	54,0	30	41	696
4.	+ N ₃₀ -	38,8	7,0	2,03	0,47	0,62	11,18	54,8	30	40	673
5.	$+ N_{30} - + N_{30}$	43,1	11,3	2,31	0,49	0,62	13,11	53,3	33	52	701
6.	+ N ₆₀ -	42,5	10,7	2,19	0,48	0,63	12,59	53,3	32	40	683
05		2,9	•	•	•	•	•		•		

```
N_{30} -
                                                                                                                  30%,
                                                                                                                                 N_{60} -
                                                                        33%.
                                                                                  1.
                                           9
                                       (30%),
(27-28%)
                                 6, 7, 10 11.
                                                             PK-
                                                                        2.
                                                                                                                     N_{30} \\
                                                  30 /
                                                                                                                PK-
    .2).
                                - 33-35%.
     20-22%,
                                                                                                                  (43,1 / )
                       60 /
                                                                                                         701 / ,
     (43,1 / )
                                                    P_{60}K_{30}
                                                                           33%).
                                       N_{30}.
                                                          9,9
                      51,6
                                                           20
13,1%,
                              54,8%,
52%.
                                                                     320 . 3.
                                                          633
                                                                                             , 2007. –     4, – 40   . 4.
701 / ,
                                                           P_{60}K_{30} \\
```

14 4•2011

, 1984. – 317 .

EFFICIENCY OF MINERAL FERTILIZERS FOR WINTER TRITIKALE GROWN ON LIGHT CHESTNUT SOILS OF KALMYKIA

A.G. Tertyshnaya, L.M. Derzhavin Pryanishnikov All-Russian Research Institute of Agrochemistry, Russian Academy of Agricultural Sciences ul. Pryanishnikova 31a, Moscow, 127550 Russia info@vniia-pr.ru

Data on the grain yield and quality of Khongor, a new released cultivar of winter triticale grown on light chestnut soils of Kalmykia, were presented depending on mineral nutrition. Mineral fertilizer rates for obtaining high yields and high-quality grain were determined.

Keywords: cultivar, winter triticale, mineral fertilizers, crop yield, grain quality.

4•2011 15