```
2000
                                                                                                                                                              Mn,
                                                                                                                                                                                 Fe [5].
                                                                                                                                           Fe Mn,
                                                                                                                                                                                             [6].
               (Tessier et al, 1979).
                                                             (Miller et al, 1986),
                                                                                                                                                                                                    . 1).
                                                                                                                                                                        MgCl_2,
                                                                                                                                                                                                        0,5 M
                                                                                                           Ca(NO_3)_2.
                                                                                        Mn
                                                                                                                                                                                  Fe Mn
                                                                                                                                                                     Fe
                                                                                                                                      0,175 M
(NH<sub>4</sub>)<sub>2</sub>
                                                                                                                                                          0,175 M
                                          0,5 M
                                                                                                                                                          (NH_4)_2
                                                                                          0,1 M
                                                                                                                                       C_2O_4 +
                                                                  0,44 M
                                       Ca(NO<sub>3</sub>)<sub>2</sub>
                                                                                      NH<sub>2</sub>OH·HCl
                                                                                                                                                       C_2O_4 + 0.1 M
                                                                                                           0,1 M Na<sub>4</sub>P<sub>2</sub>O<sub>7</sub>
   (Miller,
                                                             CH<sub>3</sub>COOH +
                                                                                                                                       0,1 M
                                                                                        + 0.01 M
                                      pH 7 (
                                                                                                                                                          H_2C_2O_4
                                                           0,1 M Ca(NO<sub>3</sub>)<sub>2</sub>
    1986)
                                                                                                                                      H_2C_2O_4\\
                                                                                         HNO<sub>3</sub>
                                                                                                                                                                 )
                                                                                                             30% H<sub>2</sub>O<sub>2</sub> +
                                                                                                            0,02M HNO<sub>3</sub>,
                                                                                                                                                                            0,04 M NH<sub>2</sub>OH·
  (Tessier,
                                                               CH<sub>3</sub>COONa
   Camp
                                                                                                                                                                             HCl 25%
CH<sub>3</sub>COONH<sub>4</sub>
                                       1 MgCl<sub>2</sub>
                                                                                                          pH 2,
                                                                                                                          3,2
                                                            (c CH<sub>3</sub>COOH)
                                                                                                           CH<sub>3</sub>COO NH<sub>4</sub>
bell, Bisson,
    1979)
                                                                                                               20% HNO<sub>3</sub>
```

6 2011

), [2].

[2].

2000

11-05-90351-

16.740.11.0528;

-				Fe-Mn			
Cu		36,60 1,8	69,10 3,4	392,70 19,2	506,80 24,8	1037,80 50,8	20.42
		67,36 3,3	<u>52,72</u> 2,6	493,12 24,1	882,32 43,2	<u>547,48</u> 26,8	2043
Pb		16,01 0,8 15,57	2,56 0,1 6,70	304,16 14,9 308,48	654,98 32,1 905,64	1062,29 52,1 803,61	2040
		0,8 106,00	0,3 96,00	15,1 458,40	44,4 125,44	39,4 <u>1288,16</u>	
Zn		5,1 64,80 3,1	4,6 49,44 2,4	22,1 <u>369,64</u> 17,8	6,0 820,80 39,6	62,1 <u>769,32</u> 37,1	2074
		- / ,	- %		52,0	27,1	I
			(. 2),	- - ,		: Pb Cu > Zn [7].	
>	: >	,	Fe Mn >	: >	,	- Fe Mr	1,
Fe 1	Mn > >	; :		> [1]	()	
	:		· :	- 6% >	•		
Fe	Mn >	>		: Mn >	,		
			> >		[3, 4]	,	
	, . ,		,	,).	, (,
	Fe Mn.	,	, –	-			,
				-	•	,	
	,		. ,			,	
		,	_		,		
				1		•	

6 2011 44

1.2.1 - 16.740.11.0054.

, . 1),

 $MgCl_2$.

// .- 2010.- 9.- . 1081-1088. 5. Berti W.R., Jacobs L.W. Chemistry and phytotoxicity of soil trace elements from repeated sewage studge applications // J. Environ. Qual. 1996. V. 25. P. 1025-1032. 6. Tessier A., Campbell P. G. O., Bisson M. Sequental extraction procedure for the speciation of the particulate trace metals // Analytical Chem. 1979. V. 51. P. 844-855. 7. Stevenson F.J., Fitch A. Cooper in soil and plant. New York: Academic pr.1981. 357 p.

COMPARATIVE STUDY OF SEQUENTIAL EXTRACTION METHODS FOR SOIL CONTAMINATION WITH HEAVY METALS

M.V. Burachevskaya¹, T.M. Minkina¹, O.G. Nazarenko², S.S. Mandzhieva¹, S.Yu. Bakoev³

¹Faculty of Biological Sciences, South Federal University

ul. Bolshaya Sadovaya 105/42, Rostov-on-Don, 344006 Russia

²Rostovskii State Center of Agrochemical Service

ul. Institutskaya 2, Rassvet, Aksai raion, Rostov oblast, 346735 Russia

³Don State Agricultural University

Persianovsky, Octyabr'skii raion, Rostov oblast, 346493 Russia

e-mail: mechtatelnitsa@bk.ru

The distribution of copper, zinc, and lead forms in artificially contaminated ordinary chernozem was studied in a model experiment. A comparative analysis of two methods for the sequential fractionation of metals — the Miller method (Miller et al., 1986) and the Tessier method (Tessier et al., 1979) — was done.

Keywords: soil, heavy metals, fractionation methods, forms of compounds.

6 2011 45