ПЛОДОРОДИЕ ТЕМНО-СЕРЫХ ЛЕСНЫХ ПОЧВ ПРИ ИХ ОКУЛЬТУРИВАНИИ

Н.В. Полякова, к.с.-х.н., В.В. Ивенин, д.с.-х.н., Ю.Н. Платонычева, к.б.н., Е.Н. Володина, Нижегородская ГСХА

ерые лесные почвы являются наиболее уязвимыми к антропогенному воздействию. Восстановлению и повышению плодородия почв сейчас уделяется мало внимания. Формируются бросовые земли, в которых физические, химические и биологические процессы изучены недостаточно, хотя они и представляют научный и практический интерес, связанный с прогнозом их развития.

качестве основного метода исследований использовался сравнительно-генетический. Объектами были выбраны различные угодья темно-серых лесных почв, находящиеся в непосредственной близости друг от друга и характеризующиеся одинаковыми геоморфологическими и гидрологическими условиями образования. Разделение почв по степени окультуренности проводили по комплексу показателей и с учетом характера использования участков за последние 40-50 лет. К слабоокультуренным вариантам расположенные на границе отнесены почвы, землепользования практически получающие органических И минеральных удобрений. Среднеокультуренные почвы входят в состав полевых севооборотов, сюда один раз за ротацию вносят органические удобрения (в среднем около 5 т/га) и известь. Сильноокультуренные относятся К прифермским севооборотам, доза внесения органических удобрений составляет 10-20 т/га, на эти участки ежегодно вносят минеральные удобрения. К залежи отнесены ранее слабоокультуренные участки, не обрабатываемые в течение 15 лет, зарастающие мелколиственными породами деревьев. Целинные почвы отобраны в широколиственном лесу с хорошо развитым травянистым покровом. Исследования проводили на территории ПХ «Пушкинское» Больше-Болдинского района, где преобладают темно-серые лесные почвы. Урожайность зерновых культур в последние годы составила в хозяйстве на слабоокультуренных участках 12-15 ц/га, среднеокультуренных – 19-25 и на сильноокультуренных - 35-40 ц/га.

Результаты исследований. Физико-химические показатели являются наиболее динамичными и в первую изменяются сельскохозяйственном очередь при использовании почв (табл. 1). Величина обменной кислотности верхнего горизонта целинных среднекислого интервала в пахотных почвах переходит в разряд близкой к нейтральной и нейтральной за счет замены естественной растительности на культурную и внесения органических удобрений и извести. Окультуривание почв обусловило достоверное повышение суммы обменных катионного обмена и емкости насыщенности основаниями с одновременным снижением величины гидролитической кислотности, которая несколько увеличивается на сильноокультуренной пашне за счет минеральных удобрений. Переход слабоокультуренной почвы категорию залежи В сопровождается подкислением почвы за счет смены видового состава растительности, значения S, ЕКО и V понижаются, приближаясь к почвам целинных биоценозов.

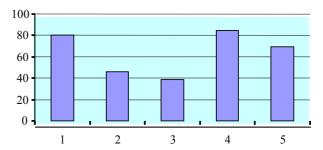
Замена природных экосистем агроценозами сопровождается снижением содержания гумуса с 5,5 до 3,4 % в слабоокультуренных почвах. Регулярное внесение органических и минеральных удобрений, соблюдение комплекса агротехнических приемов, способствующих

окультуриванию почв и повышению их продуктивности, способствует значительному увеличению гумусированности сильноокультуренных вариантов темно-серых лесных почв до значений, превосходящих целинные аналоги как в пахотном, так и нижележащем горизонте. На участках залежи содержание гумуса также достоверно повышается по сравнению со слабоокультуренной почвой, но остается значительно ниже уровня целинных почв, что определяется относительной устойчивостью почвенного покрова к изменившимся условиям и длительностью процессов гумификации.

1. Физико-химические показатели различных угодий темно-серых									
лесных почв									
Горизонт	Глубина,	Гумус,	pH_{kcl}	Нг	S	ЕКО	V,%		
	СМ	%		мг-экв	на 100 г	почвы			
	Целина (лес)								
A_1	3-24	5,48	4,9	3,59	21,6	25,2	85,4		
A_1A_2	24-43	2,70	4,8	4,58	18,5	23,5	78,5		
BA_2	43-60	1,22	4,2	4,25	20,4	24,9	81,8		
В	60-95	0,91	4,3	2,63	22,4	25,0	89,5		
Залежь									
A_1	3-25	4,22	5,3	4,96	19,7	24,6	79,8		
BA_2	25-51	2,51	5,4	3,56	19,6	23,1	84,6		
В	51-80	1,13	5,4	2,45	17,6	21,3	88,3		
Пашня слабоокультуренная									
A_{Π}	0-35	3,40	6,2	1,31	36,3	35,5	95,9		
BA_2	35-59	1,69	5,7	1,51	32,4	30,8	93,6		
В	59-92	0,66	5,7	1,40	27,8	29,2	95,2		
Пашня среднеокультуренная									
A_{Π}	0-33	5,18	6,9	0,89	38,7	38,4	97,7		
BA_2	33-56	1,36	5,7	3,08	20,1	24,1	83,8		
В	56-90	1,04	5,3	2,63	19,4	20,7	87,1		
Пашня сильноокультуренная									
A_{Π}	0-37	6,67	5,6	2,61	33,2	35,8	92,6		
BA_2	37-52	3,31	5,1	2,28	22,6	24,7	91,4		
В	52-90	1,52	5,3	1,55	20,4	22,8	93,2		
$HCP_{05}A_{II},A_{1}$	-	0,78	0,2	0,42	2,8	3,9	5,1		
HCP ₀₅ BA ₂	-	1,05	0,3	0,54	4,7	4,6	5,6		

Антропогенная деятельность значительно влияет на свойства почвы и, главным образом, на биологическую активность, одним из объективных показателей которой является ферментативная способность [1, 4]. В данной работе (табл. 2) мы рассматриваем фермент каталазу класса оксидоредуктаз. Согласно полученным нами данным можно отметить, что наиболее сильно процессы оксидоредуктазной активности протекают в среднеокультуренной пашне, что связано с внесением органических удобрений на данный год отбора почвенных образцов. **участок** В сильноокультуренной почве при внесении высоких удобрений минеральных происходит ингибирование каталазной активности за счет блокирования группы этого фермента анионами удобрений [3]. Низкая ферментативная способность слабоокультуренной почвы объясняется недостаточным поступлением органического вещества, а также тем, что данное поле используется для возделывания в основном зерновых культур и процесс поступления ферментов тормозится вследствие небольшого видового и численного разнообразия микрофлоры. Дополнительное поступление органических остатков в почвах залежи способствует активизации ферментативной активности и ее показатели повышаются до уровня средних значений.

Методом корреляционного анализа нами установлена средняя зависимость положительного знака между величиной обменной кислотности и ферментативной активностью почв (r=0.62).


Из показателей биологической активности почв важным информационным значением обладает нитрифицирующая способность, по величине которой судят об обеспеченности растений почвенным азотом. Процесс нитрификации специфическими микроорганизмами, осуществляется отличающимися высокой требовательностью к условиям существования, что позволяет считать уровень жизнедеятельности объективным показателем степени плодородия почв. Наиболее высокая нитрифицирующая способность отмечена в почвах леса, а также на сильно- и среднеокультуренной пашне; более слабый нитрификации присущ почвам, обедненным органическим веществом, что наблюдается в слабоокультуренной почве и залежи. Это подтверждают и проведенные нами расчеты, при которых выявлена сильная корреляционная связь между содержанием гумуса и нитрифицирующей способностью почв (r=0.77).

2. Показатели биологической активности различных угодий темно-серых лесных почвы							
Угодье	Ферментативная активность, О ₂ см ³ /г/мин	Нитрифицирующа я способность, мг/кг/7суток	Целлюлозораз- лагающая способность, %				
Лес	2,43	16,2	15,6				
Залежь	4,23	6,8	3,3				
Пашня слабоокульту ренная	3,14	5,8	4,2				
Пашня среднеокульт уренная	5,66	14,1	11,1				
Пашня сильноокульт уренная	2,31	16,7	10,7				
HCP ₀₅	1,47	3,3	2,2				

Немаловажным показателем при оценке биологической активности является целлюлолитическая способность, показателем трансформации органического вещества и вовлечения труднодоступных форм углерода в биологический круговорот. За счет того, что лесные биоценозы характеризуются наиболее оптимальными водновоздушным и пищевым режимами деятельность данной группы микроорганизмов здесь наиболее выражена. Внесение органических удобрений на участки среднесильноокультуренных почв также активизирует деятельность целлюлозоразлагающей микрофлоры, в результате чего значения рассматриваемой величины повышаются более чем в 2,5 раза по сравнению со слабоокультуренной пашней.

Следует отметить, что усиление активности деструкторов целлюлозы на данных участках не способствует минерализации гумуса, так как эта микрофлора разлагает первичные органические вещества, поступающие в почву, в результате такого разложения образуются соединения, входящие в состав гумусовых веществ, что, в свою очередь, обуславливает накопление гумуса в почве. Корреляционный анализ выявил среднюю взаимосвязь между содержанием гумуса и величиной целлюлозоразлагающей способности (г=0,65).

Для обобщающей оценки состояния биологической активности можно использовать интегральный показатель — уровень биологической активности (рис. 1), который находится путем расчета отношения различных показателей биологической активности [3].

1-лес, 2-залежь, 3-пашня слабоокультуренная, 4-пашня среднеокультуренная, 5-пашня сильноокультуренная Рис. Уровень биологической активности темно серых лесных почв различных угодий, %

Максимальные значения данного показателя выявлены в почвах лесного биоценоза, на средне- и сильноокультуренной пашне (80, 85 и 69 % соответственно), минимальные – в слабоокультуренных почвах, используемых на низком агротехническом уровне и в почвах залежи.

Таким образом, В современных условиях сельскохозяйственного производства почвы одного подтипа существенно отличаться по показателям, характеризующим плодородие. Окультуривание связанное с систематическим внесением органических удобрений оказывает благоприятное влияние на физикохимические показатели, содержание гумуса и биологическую Вывол слабоокультуренных активность. ИЗ использования в категорию залежи земледельческого постепенным сопровождается восстановлением показателей в сторону почв лесных биоценозов.

Литература

1.Девятова Т.А.Ферментативная активность чернозема выщелоченного при длительном систематическом применении удобрений // Почвоведение.-2006.- №1.- С.12-15. 2. Доклад о состоянии и использовании земель Нижегородской области в 2006 году.- Управление Роснедвижемости — Н.Новгород.- 2006.-112 с. 3.Соловова Г.К., Пронько В.В. Приемы повышения ферментативной активности почв Поволжья // Плодородие. — 2005. - №4 — с. 13-15. 4.Хазиев Ф.Х., Гулько А.Е. Ферментативная активность почв агроценозов и перспективы её изучения // Почвоведение. - 1991. - № 8. - С. 88-104.