УДК: 546.26.575.1

ВЗАИМОДЕЙСТВИЕ СОРТОВ ОЗИМОЙ ПШЕНИЦЫ И УДОБРЕНИЙ НА СТАРООРОШАЕМОМ ТИПИЧНОМ СЕРОЗЕМЕ

Ж.С. Саттаров, акад. АН рУз., С.К. Махаммадиев, НИИ почвоведения и агрохимии

Приведены данные по отзывчивости сортов озимой пшеницы Половчанка, Хосилдор (Санзар 8) и Таня на дозы и соотношения минеральных удобрений. Сравнительно отзывчивым на минеральные удобрения и урожайным оказался сорт Половчанка. Сорт Хосилдор по урожайности занимает последнее положение, тогда как сорт Таня – промежуточное.

Ключевые слова: сорт, Половчанка, Хосилдор (Санзар 8), Таня, удобрения, азот, фосфор, калий, структура урожая, элементы.

самостоятельный генотип и имеет свою норму Сорт реакции на условия питания. Условия корневого питания растений в почве складываются за счет взаимодействия свойств почвы и приемов агротехники.

Необходимо оптимизировать водно-воздушный и питательный режимы почв с учетом потребности культур, которая позволяет формировать растению всю его потенциальную продуктивность. Потребность к условиям питания и потенциальной продуктивности у разных генотипов разная. Следовательно, одинаковыми приемами агротехники невозможно создать оптимальные условия для разных генотипов растений [1,2].

Методика. Для изучения потребности разных сортов озимой пшеницы к условием питания на конкретной почве в учебно-опытном хозяйстве Ташкентского ГАУ проводили полевые опыты. Почва - староорошаемый типичный легкосуглинистый серозем.

В полевых опытах изучали реакции сортов озимой пшеницы Таня, Хосилдор (Санзар 8) и Половчанка на годовые дозы и соотношения минеральных удобрений.

Проведение полевых опытов, наблюдение за ростом и развитием растений, взятие почвенных и растительных образцов и анализы осуществляли по «Методам агрохимических анализов почв и растений Средней Азии» (1977), качество зерна устанавливали по методическим указаниям ТУ-Уз 8-115-97, математическую обработку урожая -«Методике полевых опытов» (Доспехов, 1985), эффективность удобрений под разные сорта озимой пшеницы – по способу Н.А. Баранова (1980) [3].

Результаты и их обсуждение. Объемная масса пахотного слоя 1,37, а подпахотного – 1,41 г/см³, чем глубже горизонт, тем выше объемная масса почвы [4]. В связи с этим, с глубиной уменьшаются общая порозность и максимальная гигроскопичность почвы. При формирований условий корневого питания растений важное значение имеют агрохимические свойства почвы (табл. 1).

В Староорошаемом типичном сероземе содержание гумуса от пахотного слоя к нижним горизонтам постепенно снижается. Содержание общего азота и его динамика по почвенному профилю повторяют картину динамики гумуса. Изменение содержания общих фосфора и калия в почве по почвенному профилю такое же как у гумуса и азота. Однако, разница между верхними и нижными слоями значительно меньше. В питании растений важную роль играют подвижные формы элементов, такие как NO_3 , P_2O_5 и K_2O . По содержанию NO_3 , подвижных фосфора и калия староорошаемый типичный серозем средне обеспечен.

Таким образом, как показывают результаты анализов, почва опытного участка по своим свойствам сравнительно выровненная и на таком фоне вполне возможна закладка полевого опыта. Полевой опыт был заложен в 2009 г. Он состоял из восьми вариантов с тремя повторностями. Размер каждого варианта (делянки) 72 m^2 . На одной делянке 8 рядов пшеницы: по два ряда с разных сторон являются защитными и 4 ряда в середине – учетными [4]. В таблице 2 приведены данные фенологических наблюдений за ростом и развитием разных сортов озимой пшеницы в конце февраля 2009 г.

После перезимовки на площади 1 м² наибольшее число растений (321,5) наблюдается на фоне минеральных удобрений $N_{200}P_{150}K_{150}$ у сортов озимой пшеницы Половчанка и Таня. Сорт Хосилдор (Санзар 8) сравнительно больше растений имел в варианте $N_{200}P_{100}K_{100}$. Следовательно, ещё в начале вегетации наблюдается неодинаковая реакция сортов озимой пшеницы на дозы и соотношения удобрений.

	1. Агрохимические своиства почвы										
Слой, см	Гумус, %	Общий, %			C:N	Подвижный, мг/кг		СО2 карбона-	SO ₄ гипса,%		
		N	P	К	C.N	P_2O_5	K ₂ O	тов,%	304 гипса, 70		
0-31	1,54	0,138	0,152	1,6	6,5	44,9	283,4	6,92	0,124		
31-55	1,43	0,109	0,134	1,9	7,6	21,3	262,6	7,85	0,117		
55-70	1,39	0,098	0,128	1,7	8,2	12,4	205,0	8,20	0,119		
70-112	1,25	0,085	0,125	1,5	8,5	10,8	178,3	8,74	0,111		
112-160	0,98	0,077	0,119	1,3	7,3	9,2	185,3	8,59	0,106		
160-220	0,41	0,056	0,101	1,0	4,2	5,9	92,7	8,94	0,103		

2. Рост и развитие сортов озимой пшеницы в зависимости от удобрения (среднее за 2010-2011 гг.)

	2.100111	pusbiline cop	TOD OSHMON HIL	тепицы в эцви	enmoeth of ja	обрения (сред	THE 30 2010 20	11 11.,			
				Февра	аль						
№п/п	Доза минеральных		Одно растение		Число расте	ний на 1м²	Одно растение				
	удобрений, кг/га д.в.	Число	Длина	Macca	Осенью (25	Весной (1	Число	Длина	Сухая		
		корней	корней, см	корней, г	ноября)	марта)	кущения	стебля, см	масса, г		
Таня											
1	$N_0 P_0 K_0$	9,8	17,6	0,22	476,5	281,1	1,1	15,6	0,3		
2	$N_{150} P_{100} K_{50}$	11,8	18,4	0,27	488,1	297,7	1,2	16,8	0,4		
3	N ₂₀₀ P ₁₀₀ K ₅₀	13,5	19,4	0,3	491,8	304,9	1,4	17	0,5		
4	$N_{200} P_{100} K_{100}$	17,6	19,6	0,31	493,9	307,2	1,5	17,8	0,5		
5	N ₂₀₀ P ₁₅₀ K ₁₀₀	18,8	20	0,32	495	311,8	1,7	17,9	0,5		
6	N ₂₀₀ P ₁₅₀ K ₁₅₀	19,2	20	0,33	499,2	314,5	1,7	18	0,6		
7	N ₂₅₀ P ₁₅₀ K ₁₅₀	19,5	19,9	0,33	496,1	312,5	1,6	17,9	0,6		
8	N ₂₅₀ P ₂₀₀ K ₁₅₀	18	19,1	0,32	489,7	304	1,5	17,2	0,5		
			•	Yocundon (Causan 8)						

Плодородие №2•2016

1	$N_0 P_0 K_0$	8,4	15,8	0,22	484,4	276,1	1	16,2	0,3		
2	N ₁₅₀ P ₁₀₀ K ₅₀	12,9	17,4	0,28	497,6	293,6	1,1	17,3	0,4		
3	N ₂₀₀ P ₁₀₀ K ₅₀	16,7	18	0,29	504,5	302,7	1,5	18,9	0,5		
4	$N_{200} P_{100} K_{100}$	17,6	19	0,3	508,8	305,2	1,6	19,1	0,5		
5	N ₂₀₀ P ₁₅₀ K ₁₀₀	17	18,6	0,3	505,6	303,3	1,6	19	0,5		
6	N ₂₀₀ P ₁₅₀ K ₁₅₀	16,7	17,7	0,3	503,5	302,1	1,5	18,8	0,4		
7	N ₂₅₀ P ₁₅₀ K ₁₅₀	16	17,4	0,29	496,6	297,9	1,5	18	0,4		
8	$N_{250} P_{200} K_{150}$	15,7	17	0,29	493,4	291,1	1,4	17,4	0,4		
	Половчанка										
1	$N_0 P_0 K_0$	10,2	18,4	0,24	478,1	288,7	1,1	16	0,4		
2	$N_{150} P_{100} K_{50}$	13,9	19,5	0,28	488,3	301,1	1,2	16,9	0,5		
3	$N_{200} P_{100} K_{50}$	17,1	20,3	0,31	493,1	302,1	1,5	17,5	0,5		
4	$N_{200} P_{100} K_{100}$	19,7	20,7	0,33	496	315	1,6	17,8	0,5		
5	$N_{200} P_{150} K_{100}$	21,3	21,4	0,34	502,4	319,1	1,6	18,3	0,6		
6	$N_{200} P_{150} K_{150}$	21,6	21,9	0,34	505,6	321	1,7	18,6	0,7		
7	$N_{250} P_{150} K_{150}$	19,5	21,6	0,33	498,7	311,7	1,7	18,5	0,7		
8	$N_{250} P_{200} K_{150}$	19,1	20	0,32	490,2	305,6	1,6	17,7	0,6		

3. Элементы структуры урожая и урожайность сортов озимой пшеницы в зависимости от удобрения (среднее за 2010-2011 гг.)

			• •	.]	Июнь				•	,	
No	Годовые дозы	Число	Число	Macca	Macca 1	Масса зерна		Урожай	Сухая	% урожая зерна	
Π/Π	минеральных	стеблей на	продуктивных	корней, г	стебля и	в 1 колосе, г	кожицы в 1	зерна, ц/га	масса со-	от обшей массы	
	удобрений, кг/га д.в.	1м ²	стеблей на 1м2		листьев, г		колосе, г		ломы, ц/га	растений	
	Таня										
1	$N_0 P_0 K_0$	281,1	192,8	0,47	1,25	0,87	0,32	16,77	35,26	23,5	
2	$N_{150} P_{100} K_{50}$	327,5	237,1	0,71	1,55	1,27	0,43	30,19	51,25	26,8	
3	$N_{200} P_{100} K_{50}$	426,8	311,6	0,99	1,62	1,54	0,49	47,98	67,43	29,3	
4	$N_{200} P_{100} K_{100}$	460,7	343,7	1,08	1,65	1,56	0,49	53,62	76,01	29,7	
5	$N_{200} P_{150} K_{100}$	510,1	398,6	1,22	1,69	1,58	0,5	62,98	86,2	30,2	
6	$N_{200} P_{150} K_{150}$	519,6	430,5	1,25	1,8	1,59	0,5	68,35	93,53	30,5	
7	$N_{250} P_{150} K_{150}$	500,0	405,9	1,24	1,75	1,56	0,5	63,1	87,5	29,9	
8	$N_{250} P_{200} K_{150}$	455,4	366,2	1,21	1,66	1,47	0,48	53,83	75,59	28,3	
	Хосилдор (Санзар 8)										
1	$N_0 P_0 K_0$	276,1	188,3	0,45	1,24	0,86	0,33	16,19	34,24	23,2	
2	$N_{150} P_{100} K_{50}$	322,9	232,1	0,74	1,49	1,42	0,46	32,96	48,26	29,1	
3	$N_{200} P_{100} K_{50}$	454	334,1	1,21	1,61	1,53	0,49	51,11	73,09	29,3	
4	$N_{200} P_{100} K_{100}$	488,3	402	1,24	1,79	1,57	0,49	63,22	87,4	29,9	
5	$N_{200} P_{150} K_{100}$	485,2	397,8	1,22	1,77	1,55	0,49	60,47	85,88	29,4	
6	$N_{200} P_{150} K_{150}$	483,3	387,1	1,22	1,74	1,46	0,48	55,31	84,09	28,3	
7	$N_{250} P_{150} K_{150}$	446,8	350,3	1,2	1,68	1,44	0,48	50,24	74,17	28,3	
8	$N_{250} P_{200} K_{150}$	407,5	310,6	1,18	1,61	1,43	0,47	44,41	62,75	28,2	
				Пол	ювчанка						
1	$N_0 P_0 K_0$	310,2	214	0,49	1,26	0,87	0,33	18,58	39,17	23,6	
2	$N_{150} P_{100} K_{50}$	354,1	263,1	0,86	1,47	1,14	0,4	31,05	52,05	27	
3	$N_{200} P_{100} K_{50}$	458,4	350,7	1,22	1,53	1,4	0,47	49,26	70,54	29,4	
4	$N_{200} P_{100} K_{100}$	506,9	385,2	1,26	1,67	1,57	0,5	60,47	85,87	29,6	
5	$N_{200} P_{150} K_{100}$	512	419,4	1,32	1,76	1,6	0,51	66,3	90,11	30	
6	$N_{200} P_{150} K_{150}$	531,5	452,3	1,32	1,79	1,62	0,51	73,28	95,12	30,8	
7	$N_{250} P_{150} K_{150}$	525,6	432,2	1,3	1,76	1,56	0,5	68,04	92,03	30,3	
8	N ₂₅₀ P ₂₀₀ K ₁₅₀	468,4	390,2	1,24	1,65	1,47	0,49	57,35	80,37	29,8	

Важный показатель будушего урожая — число растений, оставшихся после перезимовки. Наибольшее число таких растений у сорта Половчанка, наименьшее — у сорта Хосилдор (Санзар 8). Сорт Таня занимает промежуточное положение.

Отсюда можно заключить, что для почвенно-климатических условий староорошаемого типичного серозема сравнительно устойчив к перезимовке сорт Половчанка, за ним следует Таня.

В таблице 3 приведены структура элементов урожая и урожайность сортов озимой пшеницы при применении различных доз и соотношений минеральных удобрений. Как показывают данные, в конце мая — начале июня сорта на разных фонах удобрений формируют элементы структуры урожая и урожайность зерна по — разному.

Сорт Половчанка на 1 м 2 имел 525-535 общих, 432-452 продуктивных растений на фоне удобрений $N_{200-250}$ P_{150} K_{150} , сорт Таня, соответственно, 500-519 и 405-430 на этом же фоне и сорт Хосилдор (Санзар 8) 485,2-488,3 и 388,8-402,0 на фоне удобрений N_{200} P_{100} K_{100} , т.е. на низком фоне.

Масса зерна в одном колосе у сорта Половчанка $(1,60-1,62\ r)$ была сравнительно большой при дозе удобрений $N_{200}\ P_{150}\ K_{100-150}$ кг/га, у сорта Таня наибольшая масса зерна 1 колоса составляет 1,58-1,59 г в варианте с такими же удобрениями; у сорта Хосилдор (Санзар 8) сравнительно большая масса зерна

формировалась при меньшей дозе удобрений ($N_{200}P_{100}K_{100-150}$ кг/га). Следовательно, сорта Половчанка и Таня более отзывчивы к фосфорным удобрениям (см. табл. 3).

4. Урожайность озимой пшеницы (сорт Таня), ц/га

Вари-				Сумма,	Сред-			
ант		1	2		3		V	няя
	2010	2011	2010	2011	2010	2011		
	Γ.	Γ.	Γ.	Γ.	Γ.	Γ.		
I	15,56	18,22	14,06	18,4	16,88	18,64	101,76	16,96
II	28,19	32,58	26,16	32,67	28,81	32,73	181,14	30,19
III	45,77	51,96	44,18	50,55	46,28	49,14	287,88	47,98
IV	51,48	55,71	52,08	55,14	51,82	54,69	320,92	53,49
V	57,07	64,12	58,36	63,4	60,31	62,62	365,88	60,98
VI	59,09	65,1	61,07	65,4	61,46	65,37	377,49	62,92
VII	55,18	60,54	53,26	60,39	59,5	60,21	349,08	58,18
VIII	45,96	48,5	44,85	48,56	46,47	48,57	282,91	47,15
Сумма,	358,3	396,73	354,02	394,51	371,53	391,97	2267,06	47,23
P								

Следует провести дисперсионный анализ данных опыта, определить HCP_{05} и сгруппировать сорта Таня, Санзар 8, Половчанка (средне за 2010-2011 гг.) по отношению к среднему (нулевая гипотеза) (табл. 4-7).

5. Поправки к средним корректированным величинам **урожайности**

урожинности									
Вариант	1		2		3		Сумма, V		
	2010 г.	2011 г.	2010 г.	2011 г.	2010 г.	2011 г.			
I	-29,44	-26,78	-30,94	-26,60	-28,12	-26,36	-168,24		
II	-16,81	-12,42	-18,84	-12,33	-16,19	-12,27	-88,86		
III	0,77	6,96	-0,82	5,55	1,28	4,14	17,88		
IV	6,48	10,71	7,08	10,14	6,82	9,69	50,92		
V	12,07	19,12	13,36	18,40	15,31	17,62	95,88		
VI	14,09	20,10	16,07	20,40	16,46	20,37	107,49		
VII	10,18	15,54	8,26	15,39	14,50	15,21	79,08		
VIII	0,96	3,50	-0,15	3,56	1,47	3,57	12,91		
Сумма Р	-1,70	36,73	-5,98	34,51	11,53	31,97	107,06		

Общее число наблюдений: N=ln=8·6=48.

Корректирующей фактор: $C=(\sum x_1)^2: N=(107,6)^2: 48=238,788.$ Суммы квадратов отклонения:

 $\begin{array}{l} C_y = (\sum x_1)^2 - C = (29,44^2 + 26,78^2 + \ldots + 3,57^2) - 238,788 = 11069,89, \\ C_p = \sum p^2 : 1 - C = (1,70^2 + 36,73^2 + \ldots 31,97^2) : 8 - 238,788 = 227,9227, \\ \end{array}$ $C_V = \overline{E_V}^2$:n-C=(168,24²+88,86²+17,88²+50,92²+95,98²+107,49² $79,08^2+12,91^2$):6-238,788=10808,0,

 $C_z = C_y - C_p - C_v = 11069,89 - 227,9227 - 10808,0 = 33,96.$

6	6. Результаты дисперсионного анализа										
Дисперсия	Сумма	Степени	Средний	F_{Φ}	F_{05}						
	квадратов	свободы	квадрат								
Общая	11069,89	47	-	-	-						
Повторений	227,92	6			-						
Вариантов	10808,00	8	1351,00	914,94	2,53						
Остатка	33,96	23	1,48								

$$Sx = \sqrt{\frac{S^2}{n}} = \sqrt{\frac{1,48}{8}} = 0,43$$
и

Ошибка опыта.

 $S_d = \sqrt{\frac{2s^2}{n}} = \sqrt{\frac{2 \cdot 1.48}{6}} = 0,61$

Верный опыт

$$HCP_{05} = \frac{t_{05}S_d}{x^{-1}} \bullet 100 = \frac{2,07*1.48}{47,23} = 6,47\%$$

7. Результаты математической обработки данных по сортам озимой пшенины

Сорт	S _x	S_d	HCP ₀₅	HCP ₀₅ , %
Таня	0,43	0,61	3,06	6,47
Санзар 8	0,34	0,48	1,95	4,46
Половчанка	0,57	0,81	5,39	10,87
∑ среднее	0,45	0,63	3,46	7,27

Заключение. У всех сортов в разных вариантах удобрений общая урожайность формировалась неодинаково. Сорт Половчанка наибольшую урожайность зерна (73,3 ц/га) показал по фону удобрений $N_{200}P_{150}K_{150}$.

Сорт Таня дал 68,3 ц/га на этом же фоне минеральных удобрений, а сорт Хосилдор (Санзар 8) - 60,5 ц/га при дозе удобрении $N_{200}P_{100}K_{100}$. Как показывают результаты опытов, в условиях староорошаемого типичного серозема Ташкентской области относительной отзывчивостью на удобрения, особенно фосфорные и калийные, выделялся сорт Половчанка и дал высокий урожай зерна.

Для сорта Таня также наиболее оптимальным был этот же фон удобрений, но урожайность зерна этого генотипа на 4-5 ц/га меньше, чем у Половчанки. Сорт Хосилдор (Санзар 8) по сравнению с вышеуказанными сортами был менее отзывчив на удобрение и урожайность зерна получена на 5-10 ц/га меньше. Таким образом, для условий староорошаемого типичного серозема Ташкентский области для производства рекомендуется сорт Половчанка с дозой минеральных удобрений $N_{200}P_{150}K_{150}$ кг/га.

Литература

- 1. Сорт и удобрение. Иркутск. Вып. 2, 1975.
- 2. Саттаров Ж.С. Почва, удобрения, сорт и урожай, 1989.
- 3. Доспехов Б.А. Методика полевого опыта. М.: Агропромиздат, 1985. - C. 248-255.
- 4. Ж. Саттаров, Б. Атоев, С. Махаммадиев // Узбекский биологический журнал.-Ташкент.- 2011.- №2.-С. 55-57.

 $HCP_{05}=t_{05}S_d=2,07\cdot1,48=3,06$.

INTERACTION OF WINTER WHEAT CULTIVARS AND FERTILIZERS ON OLD-IRRIGATED TYPICAL SIEROZEM

Верный опыт.

Zh.S. Sattarov, S.K. Makhammadiev, Research Institute of Soil Science and Agrochemistry, Academy of Sciences of Uzbekistan ul. Kamarniso 3, Almazor, Tashkent, 100179 Uzbekistan, E-mail: niipochva@inbox.uz, samad3182@mail.ru

Data are presented on the response of the winter wheat cultivars Polovchanka, Hosildor (Sanzar-8), and Tanya to the rates and ratios of mineral fertilizers. Polovchanka was found to be the most responsive and yielding cultivar. The cultivar Hosildor (Sanzar-8) was the last in terms of yield, and the cultivar Tanya occupied an intermediate position.

Keywords: cultivar, Polovchanka, Hosildor (Санзар-8), Tania, fertilizers, nitrogen, phosphorus, potassium, yield structure, elements.