УДК: 631. 445.24.811.1

АЗОТНЫЙ РЕЖИМ И БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ ПОЧВЫ ПОД ВЛИЯНИЕМ ИЗВЕСТКОВАНИЯ И УДОБРЕНИЙ

В.А. Свирина, О.А. Артюхова, Институт семеноводства и агротехнологий – филиал Федерального государственного бюджетного научного учреждения «Федеральный научный агроинженерный центр ВИМ» (ИСА – филиал ФГБНУ ФНАЦ ВИМ) Россия, 390502, Рязанская область, Рязанский район, с. Подвязье, ул. Парковая, д. 1 8(4912)266231, e-mail: podvyaze@bk.ru

Представлены результаты многолетних исследований по динамике содержания нитратного и аммиачного азота, а также усилению микробиологической активности почвы под влиянием химического мелиоранта — доломитовой муки на фоне с минеральными удобрениями и без них в шестипольном зернотравянопропашном севообороте на темно-серой лесной почве тяжелого гранулометрического состава.

Ключевые слова: почва, севооборот, доломитовая мука, нитратный азот, аммиачный азот, микробиологическая активность, минеральные удобрения.

DOI: 10.25680/S19948603.2019.110.01

Известкование — одно из важнейших мероприятий при возделывании основных сельскохозяйственных культур в Нечерноземной зоне, способствующее повышению плодородия почвы и ее продуктивности. Это не только средство нейтрализации кислотности, но и важный прием химической мелиорации, оказывающий положительное влияние на большой комплекс физикохимических свойств почвы [11].

Однако, в последние годы у сельскохозяйственных товаропроизводителей Нечерноземной зоны ослабло внимание к такому важному и необходимому, сравнительно недорогому, но эффективному мероприятию, как известкование кислых почв. Так, например, в Рязанской области в последние годы известкуют не более 3-4 тыс. га пахотных угодий в год, при этом свыше 500 тыс. га пашни нуждается в известковании. Несмотря на разработку ряда программ по известкованию почв общероссийского и регионального уровня, объемы известкования находятся на прежнем уровне. Кислотность (рН) солевой вытяжки за этот период возросла с 5,40 до 4,98. В сущности, идет процесс трансформации почв с нейтральной реакцией среды в направлении слабой, средней и сильной степени кислотности.

В почве отсутствует механизм фиксации кальция. Между тем азот важный элемент почвенного плодородия и микробиологической активности почв. Он занимает первое место по миграции из корнеобитаемого слоя с инфильтрационными водами. Отчуждение оснований из почвы составляет от 100 до 200 кг/га пашни в год в пересчете на кальций в зависимости от типа почв и снижает величину рН в среднем за год на 0,02-0,05 ед. [3].

Для поддержания плодородия почвы, сохранения прочности почвенных агрегатов необходимо, чтобы почвенный поглощающий комплекс был достаточно насыщен кальцием и магнием (степень насыщения 85-90 %). Магния потребляется растениями меньше, чем кальция, но его роль в развитии растений очень велика, поскольку он является строительным материалом молекулы хлорофилла.

Избыточная кислотность пашни – одна из главных причин ухудшения физико-химических и агрохимических свойств почвы, снижения плодородия и продуктивности пахотных угодий Нечерноземной зоны.

Более информативным является показатель содержания нитратного азота в почве: он входит в состав аминокислот и ему принадлежит главная роль в ростовых процессах и повышении урожайности сельскохозяйственных культур [8]. Максимальное количество нитратного азота образуется при щелочной реакции среды или близкой к нейтральной [1].

Улучшение катионного состава почвенного поглощающего комплекса создает благоприятные условия для активизации деятельности почвенных микроорганизмов.

Цель наших исследований — оценить влияние доломитовой муки на фоне применения минеральных удобрений и без них на изменение нитратного и аммиачного азота и уровень микробиологической активности в 6-польном зернотравянопропашном севообороте.

Научная новизна исследований состоит в том, что впервые в данной зоне на темно-серой лесной почве тяжёлого гранулометрического состава проводятся исследования по влиянию известкования на изменение нитратного и аммиачного азота и микробиологическую активность почвы с использованием доломитовой муки.

Методика. Опыт заложен на темно-серой лесной почве с содержанием гумуса в пахотном горизонте — 3,4-3,15%, р $H_{\text{сол.}}$ – 5,04-4,78, $H\Gamma$ 4,69-5,86 $M\Gamma$ Экв/100 Γ , S – 20,4-18,4 %, V – 81,3-75,9 %, Ca – 16,9-17,5, Mg – 2,4 $M\Gamma$ Экв/100 Γ , P_2O_5 – 10,6-18,9, K_2O – 9,2-13,8 $M\Gamma$ /100 Γ почвы, плотность сложения – 1,38-1,40 Γ /см³.

В качестве мелиоранта использовали доломитовую муку, соответствующую ГОСТу 14050-93, которую внесли под зяблевую обработку в 2011 г. из расчета 1,5 нормы гидролитической кислотности [3].

Исследования проводили в 2011-2017 гг. в двухфакторном опыте. Фактор A — минеральные удобрения — фоны (NPK) $_0$ и ежегодное внесение (NPK) $_9$; фактор B — внесение $CaCO_3$.

В почвенных влажных образцах определяли: N–NO₃ – по Грандваль-Ляжу [ГОСТ-26951-86], N–NH₄ – реактивом Несслера [ГОСТ-26489-85]. Изучение микробиологической активности проводили методом аппликаций

по методике Е.Н. Мишустина, Г.Ф. Никитенко [7], выделение диоксида углерода из почвы — методом В.И. Штатнова [2].

Результаты и их обсуждение. Метеорологические условия первой ротации севооборота в течение вегетационных периодов существенно отличались по температурному режиму от средних многолетних данных и по количеству и равномерности выпадения осадков.

Вегетационный период 2012 г. характеризовался повышенными температурами воздуха, в мае среднесуточная температура превышала среднемноголетнюю на 7,6°С, в июне – на 2,9°С. Осадки выпадали неравномерно: за май выпало 62% от средних многолетних значений, в июне – 136%. 2013 год также характеризовался повышенными температурами воздуха мая и июня, соответственно, на 7,2 и 5,4°С при дефиците осадков в июне 52 %. В мае 2014 г. средняя суточная температура воздуха превышала на 6,2°С среднемноголетнюю при оптимальном количестве осадков, в июне температурный режим был в пределах средних значений с осадками почти в 2,0 раза больше средних многолетних. Метеоусловия в мае и июне 2015 г. отличались повышенными температурами воздуха – на 5,3 и 3,0°С соответ-

ственно при достаточном и хорошем увлажнении, особенно в июне – в 2,2 раза больше средних многолетних. Условия 2016 г. были относительно благоприятны – в мае и июне температуры зафиксированы выше на 4°С, осадки в мае составили 155% от многолетних значений, отмечено меньшее на 14,9 мм количество осадков в июне. В 2017 г. температуры мая и июня были на уровне средних многолетних показателей с небольшим дефицитом осадков в 10-13%.

Следует отметить, что выпадение большого количества осадков способствует вымыванию накапливающихся нитратов в глубокие слои почвы. Это ведет к недостатку осадков в ранние фазы вегетации возделываемых культур, когда закладывается уровень их урожайности [5].

В первый год действия доломитовой муки под первой культурой севооборота (2012 г.) отмечено небольшое увеличение количества нитратного азота в почве: в варианте без удобрений на 0,5 мг/кг, а по удобренному фону на 0,73 мг/кг (табл. 1). Нитратные формы азота не накапливаются в почве в больших количествах, так как потребляются растениями в течение всего вегетационного периода и используются микроорганизмами [10].

1. Влияние извести на содержание нитратного (N-NO₃) и аммиачного азота в слое почвы 0-30 см, мг/кг

Вариант опыта	Ячмень +	Клевер 1-го	Вико-овес,	Озимая пше-	Кукуруза,	Яровая пше-	Среднее	Прибавка к
	клевер, 2012 г.	г.п., 2013 г.	2014 г.	ница, 2015 г.	2016 г.	ница, 2017 г.		контролю, %
$1. N_0 P_0 K_0$	<u>2,3</u>	3,98	7,34	<u>1,85</u>	<u>3,54</u>	<u>1,82</u>	3,47	-
	5,7	21,2	20,8	23,4	17,75	16,3	17,53	
$2. N_0 P_0 K_0 + CaCO_3$	2,8	6,40	9,01	<u>2,29</u>	4,12	2,12	4,47	28,8
	6,5	22,6	21,2	24,6	18,6	16,5	18,33	4,6
3. N ₉₀ P ₉₀ K ₉₀	<u>2,35</u>	4,13	8,03	<u>1,98</u>	4,24	<u>2,15</u>	3,81	9,8
	6,3	21,2	21,8	24,1	18,53	17,4	18,2	3,8
4. N ₉₀ P ₉₀ K ₉₀ +	3,08	<u>7,6</u>	11,25	<u>2,52</u>	4,99	<u>2,56</u>	5,53	<u>59,4</u>
CaCO ₃	7,07	23,2	22,4	26,0	19,46	19,7	19,6	11,8
HCР ₀₅ и3в.	0,10	<u>1,18</u>	2,02	0,19	0,55	0,32		
	2,19	1,30	0,48	0,95	0,70	1,21		

Примечание. В числителе содержание нитратного азота, в знаменателе – аммиачного.

Культуры по-разному относятся к реакции среды и накоплению нитратного и аммиачного азота. Клевер луговой наиболее чувствителен к повышенной кислотности и очень сильно отзывается на известкование. Другая особенность культуры клевера — сильноразвитая корневая система, уходящая в глубь почвенной толщи; она может использовать высокие природные запасы азота, фосфора, проявляет способность к азотфиксации [9].

Полученные в опыте данные показывают, что известкование приводит к увеличению содержания нитратов на клевере 1-го г.п. по фону минеральных удобрений на 3,47 мг/кг почвы, в варианте без удобрений – на 2,42 мг/кг почвы.

У третьей культуры севооборота количество нитратного азота было максимальным, в варианте с минеральными удобрениями и $CaCO_3$ прибавка составила 3,22 мг/кг почвы, без удобрений — 1,67 мг/кг.

Аналогичное влияние доломитовой муки на накопление нитратного азота по фону минеральных удобрений наблюдалось в последующие годы под озимой пшеницей, кукурузой, яровой пшеницей. Увеличение содержания нитратов составило, соответственно, 0,54; 0,6; 0,41 мг/кг почвы. Неравномерность накопления нитратов по севообороту связана с различной интенсивностью поглощения растениями азота и способностью запасать его.

В среднем за ротацию севооборота внесенная доломитовая мука увеличила содержание нитратного азота

на фоне без удобрений до 128,8%, а в варианте с систематическим применением(NPK) $_{90}$ оно возросло до 159,4% (5,53 мг/кг почвы.) Наибольшее увеличение нитратного азота отмечено на второй год действия доломитовой муки.

Важным показателем обеспеченности растений азотом является аммиачный азот, который в корнях восстанавливается до нитритов, а затем до аммиака.

Определение количества аммиачного азота под действием мелиоранта показало увеличение его в первый год действия, при использовании минеральных удобрений прибавка составила — 2,18 мг/кг, без удобрений — 0,77 мг/кг почвы. Достоверные прибавки содержания аммиачного азота в пахотном слое почвы отмечаются в дальнейшем на всех культурах севооборота в варианте с систематическим внесением (NPK)₉₀: на клевере 1-го г.п. + 2,0; вико-овсе + 0,6; озимой пшенице + 1,93; кукурузе + 0,93; яровой пшенице + 2,3 мг/кг почвы.

За ротацию севооборота мелиорант в варианте с минеральными удобрениями способствовал увеличению содержания аммиачного азота на 11,8 % по сравнению с контролем.

Накопление аммиачного и нитратного азота определяется биологической активностью почвы и зависит от гидротермических условий вегетационного периода, вида выращиваемой культуры, предшественников [8].

Под влиянием известкования наблюдается существенное улучшение биологической активности почвы,

что способствует активизации полезных микробиологических процессов [6].

Поскольку образование CO_2 в почве связано с биологическими и биохимическими процессами, протекающими в ней, то количество выделившегося диоксида углерода может характеризовать интенсивность газообмена и разложения органического вещества. Дефицит влаги, как и её избыток, может снизить скорость продуцирования CO_2 [6].

В исследованиях с внесением CaCO₃, как в варианте без удобрений, так и по фону минеральных удобрений, наблюдалось увеличение биологической активности в почве в течение всей ротации. Наибольшее влияние на активность микроорганизмов доломитовая мука оказала в первый и особенно во второй год действия (табл. 2).

2. Влияние доломитовой муки на интенсивность биологической

активности почвы									
№ вари-	Ячмень	Клевер	Вико-	Ози-	Куку-	Яро-	Сред	При-	
анта	+	1-го	овес	мая	руза	вая	нее	бавка	
опыта	клевер	г.п.	2014 г.	пше-	2016 г.	пше-		К	
	2012 г.	2013 г.		ница		ница		кон-	
				2015 г.		2017 г.		тро-	
								лю, %	
1	51,4	52,9	106,5	204,5	127,6	211,0	125,6	-	
	7,96	11,9	19,4	10,8	18,5	10,5	13,2		
2	170,1	177,8	168,5	224,1	185,0	240,0	194,2	68,6	
	9,9	18,8	23,9	14,5	41,5	17,1	21,0	59,1	
3	60,2	59,6	168,7	212,3	250,6	241,0	165,4	39,8	
	7,9	15,9	21,7	16,1	23,4	13,51	16,41	24,3	
4	179,6	188,8	240,6	239,8	366,6	<u>275</u>	248,4	83,0	
	11,4	25,8	26,9	20,6	53,9	23,0	26,9	103,8	
НСР ₀₅ изв	1,40	6,02	1,37	<u>5,35</u>	2,7	22,8			
	1,40	1,35	1,37	1,11	1,78	3,88			

Примечание. В числителе выделение диоксида углерода в мг $CO_2/(M^2 \cdot \mathbf{q})$, в знаменателе степень разложения ткани в слое 0-30 см (метод льняных полотен) в %.

В 2012 г. увеличение зафиксировано на 118,7-119,4 $CO_2/(M^2 \cdot q)$, в 2013 г. на 124,9-129,2 мг $CO_2/(M^2 \cdot q)$. В последующие годы интенсивность действия доломитовой муки несколько снижалась, однако в целом микробиологическая активность почвы достоверно больше в варианте с $CaCO_3$. В 2015 и 2017 г. наблюдалось одно из наибольших выделений диоксида углерода по ротации севооборота, при этом следует отметить наименьшее значение прибавки от влияния мелиоранта — 19,6-27,5 и 29,0-34,0 мг $CO_2/(M^2 \cdot q)$, соответственно.

Полученные данные за ротацию севооборота показали существенную положительную разницу в количестве выделяемого диоксида углерода при внесении доломитовой муки в варианте без удобрений, по сравнению с вариантом с систематическим внесением (NPK)₉₀.

Степень разложения ткани зависит от внесения минеральных удобрений, влажности почвы, температурного режима, поступления в почву органического вещества, мелиоранта [4].

Сравнение целлюлозоразлагающей активности почвы по годам исследований показало существенное влияние $CaCO_3$ на интенсивность микробиологических процессов почвы как на фоне применения (NPK)₉₀, так и без удобрений. Более высокая целлюлозоразлагающая способность микроорганизмов под действием мелиоранта проявилась в 2016 г. под кукурузой в варианте с внесением $N_{90}P_{90}K_{90}$.

Оптимизация пищевого режима почвы при применении известьсодержащих материалов оказала влияние на продуктивность культур зернотравянопропашного севооборота (табл. 3). В зависимости от культуры при-

бавка составила от 2,4 до 13,7 ц к.е/га без применения удобрений, и от 5,7 до 16,8 ц. к.е/га на удобренном фоне.

3. Влияние минеральных удобрений и извести на продуктивность

культур севооборота, ц к.е/га										
№ вари-	Яч-	Кле-	Вико-	Озимая	Ку-	Яро-	Cpe	При		
анта	мень +	вер 1-	овес	пшени-	куру-	вая	днее	бав-		
опыта	клевер	го г.п.	2014 г.	ца	за	пше-		ка к		
	2012 г.	2013 г.		2015 г.	2016 г.	ница		кон-		
						2017 г.		тро-		
								лю,		
								%		
1	28,4	91,1	27,8	48,4	57,2	38,6	48,6			
2	30,8	102,4	32,1	54,1	70,9	44,1	55,7	14,6		
3	40,4	93,0	32,7	65,6	68,2	54,6	59,1	21,6		
4	46,1	108,6	41,4	72,9	85,0	61,9	69,3	42,6		
НСР ₀₅ -изв	0,86	3,49	1,11	2,84	4,76	0,29				

Из всех культур полевого севооборота кукуруза показала самую высокую отдачу в виде прибавки урожая на мелиоративный прием – 13,7-16,8 ц к.е/га, что указывает на высокую требовательность к плодородию.

В среднем за 2012-2017 гг. доломитовая мука на фоне систематического применения минеральных удобрений повысила продуктивность севооборота на 10,2 ц к.е/га, т.е. на 3,05 ц к.е/га больше, чем в варианте без удобрений – 7,1 ц к.е/га Наибольший условно-чистый доход от $CaCO_3$ – 5049 руб/га получен при внесении извести на фоне минеральных удобрений, в варианте без удобрений 3924 руб/га.

Выводы. Полученные данные по первой ротации севооборота свидетельствуют, что внесение доломитовой муки в дозе 1,5 нормы г. к. создает высокий уровень обеспеченности темно-серой лесной почвы нитратным и аммиачным азотом, а также усиливает микробиологическую деятельность почвы.

Примененный кальцийсодержащий материал способствовал увеличению продуктивности культур севооборота на 14,6%, минеральные удобрения увеличивали продуктивность на 21,6 %. Совместное применение минеральных удобрений с известкованием позволило повысить продуктивность севооборота на 42,6%. Известкование 1,5 нормы г.к. эффективно в его последействии и экономически оправдано.

Литература

- 1. Алиев А.М., Варламов В.А., Ваулина Г.И и др. Комплексное применение агрохимических средств основа высокой продуктивности и устойчивости земледелия // Плодородие. 2009. № 2. С. 5-8.
- 2. *Воробьев С.А.* Практикум по земледелию / С.А. Воробьев, Б.А. Доспехов, С.И. Долгов. М.: Колос, 1967. 181 с.
- 3. *Гладышева О.В.*, *Пестряков А.М.*, *Свирина В.А*. Бобово-злаковые травы и минеральные удобрения в системе мер повышения плодородия почв // Вестник РАСХН. 2016. № 2. С. 26-29.
- 4. Гладышева О.В., Свирина В.А., Сухрякова О.А. Влияние доломитовой муки на агрофизические свойства темно-серой лесной тяжелосуглинистой почвы в севообороте // Аграрная наука. 2018. № 7. С. 62-65.
- 5. *Лукин С.В.* Динамика основных показателей плодородия и продуктивности пахотных почв Белгородской области // Земледелие. -2016. -№ 3. -C. 20.
- 6. *Ломако Е.И.* Известкование почв Республики Татарстан / Е.И. Ломако, Ш.А. Алиев. Казань: Центр инновационных технологий, 2004. 271 с.
- 7. *Мишустин Е.Н.* Опытное дело в полеводстве / Е.Н. Мишустин, Γ . Ф. Никитенко. М.: Россельхозиздат, 1982. 187 с.
- 8. *Надежскина Е.В.* Экологические аспекты влияния реакции среды на азотный режим чернозема выщелочного // Доклады Российской академии с.-х. наук. -2004. N $_2$. C.17-20.
- 9. *Полякова Н.П., Ивенин В.В.* Плодородие темно-серых лесных почв при их окультуривании // Плодородие. -2009. № 1. С. 35-37.

10. Сайфулина Л.Б. Изменение содержания общего углерода и азота в южном черноземе при длительном применении // Плодородие. – 2016. – № 4. – С. 19-21.

11. Сычев В.Г, Аканова Н.И. Состояние и эффективность химической мелиорации почвы в земледелии Российской Федерации // Плодородие. -2013. - № 1. - С. 9-13.

DYNAMICS OF NITRATE AND AMMONIUM NITROGEN UNDER THE INFLUENCE OF DOLOMITE POWDER AND MINERAL FERTILIZERS

V.A. Svirina, O.A. Artyukhova, ISA – a branch of the FSBI FNATS VIM Parkovaya ul. 1, 390502, s. Podvyaze, Russia, E-mail: podvyaze@bk.ru

In this article we present the results of long-term studies on the dynamics of nitrate and ammonia nitrogen, as well as increasing of soil microbiological activity under the influence of chemical ameliorant – dolomite powder with mineral fertilizers and without them in the six-field grain-grass crop rotation on dark gray forest soil of heavy mechanical composition.

Key words: soil, crop rotation, dolomite powder, nitrate nitrogen, ammonia nitrogen, microbiological activity, mineral fertilizers.

УДК 631.582:631.45:631.82:631.41

ВЛИЯНИЕ МИНЕРАЛЬНЫХ УДОБРЕНИЙ НА УРОЖАЙНОСТЬ И ОКУПАЕМОСТЬ ПРИБАВКОЙ УРОЖАЯ ЗЕРНОВЫХ КУЛЬТУР

А.А. Коваленко, к.с.-х.н., Т.М. Забугина, к.с.-х.н., Всероссийский научно-исследовательский институт агрохимии им. Д.Н. Прянишникова РАН 127550, Москва, ул. Прянишникова, 31a, Россия, kovalhud@mail.ru, tanzab58@mail,ru. 89152083860

Работа выполнена по госзаданию 0572-2019-0011

Изложены результаты исследования влияния минеральных удобрений на урожайность и окупаемость удобрений урожаем зерновых культур при органоминеральной и минеральной системах удобрения в севооборотах на дерново-подзолистой почве Подмосковья разной степени окультуренности. Установлены наиболее эффективные с точки зрения урожайности зерновых культур и оплаты удобрений урожаем системы удобрения в зависимости от уровня окультуренности почвы.

Ключевые слова: севооборот, окультуренность почвы, система удобрения, окупаемость удобрений урожаем, зерновые культуры, прибавка урожая.

DOI: 10.25680/S19948603.2019.110.02

В настоящей статье приведены фрагменты результатов трех стационарных полевых опытов, проводившихся на дерново-подзолистой средне — и тяжелосуглинистой почве разной степени окультуренности бывшей Центральной опытной станции ВИУА (ныне отдел длительных опытов ВНИИ агрохимии), Московская область, Домодедовский район. Опыты СШ-1 (стационар Шебанцево-1) проводили на исходно кислой, бедной питательными веществами почве, СШ-8 — на почве среднего уровня окультуренности, СД-1 (стационар Данилово-1) — на почве высокой степени окультуренности. В них изучали влияние известкования, органической, органоминеральной и минеральной систем удобрения на урожайность культур и показатели плодородия почвы.

Опыт СШ-1 проводили в севообороте со следующим чередованием культур: 1 — вико-овсяный пар; 2 — озимая пшеница; 3 — клевер 1-го г.п.; 4 — озимая пшеница; 5 — картофель; 6 — ячмень; 7 — овес. Опыт СШ-8: 1 — картофель; 2- ячмень; 3, 4 — многолетние травы 1-го и 2-го г.п.; 5 — озимая пшеница; 6 — картофель ранний; 7 — озимая пшеница. Опыт СД-1: 1 — вико-овсяный пар; 2 — озимая пшеница; 3 — картофель; 4 — ячмень.

В данном сообщении приведены сведения за IV ротацию севооборота опыта СШ-1, III ротацию – опыта СШ-8 и II ротацию – опыта СД-1. В опытах выращивали озимую пшеницу Мироновская 808 (оп. СШ-1), По-

лесская безостая (оп. СШ-8) и Мироновская 808 улучшенная (оп. СД-1), ячмень Московский 121(оп. СШ-1), Зазерский 85 (оп. СШ-8) и Носовский 9 (оп. СД-1), овес Гамбо (оп. СШ-1). Технология возделывания культур — типичная для зоны. Число опытных полей — 3 (оп. СШ-1) и 4 (оп. СШ-8, СД-1), повторность вариантов опытов четырехкратная. Площадь опытной делянки (\mathbf{m}^2): опыт СШ-1- общая 174, учетная — 100, СШ-8 — 120 и 64, СД-1 — 85 и 52. Число вариантов опытов: СШ-1 — 20, СШ-8 — 22, СД-1 — 8×5 фонов окультуренности.

В опытах применяли известняковую муку, навоз полуперепревший КРС, минеральные удобрения – аммиачную селитру, суперфосфат гранулированный двойной и хлористый калий.

В опыте СШ-1 в IV ротации севооборота известь вносили общим фоном по всем вариантам в дозе 4 т/га, навоз в дозах 40 и 80 т/га — под викоовес и картофель, средняя доза за 1 год ротации составила, соответственно, 11,4 и 22,9 т/га. Среднее за год количество минеральных удобрений по основной системе удобрения составило $N-77~{\rm kr/ra},\,P-69,\,K-77~{\rm kr/ra}.$

В опыте СШ-8 известь вносили под первую культуру севооборота – картофель, в III ротации в дозе 12,5 т/га. Навоз применяли дважды за ротацию: под среднепоздний и ранний картофель. В вариантах органоминеральной системы дозы навоза 20 и 35 т/га, или 5,7 и 10 т/га в среднем за 1 год ротации. Базовая доза минеральных