ЭФФЕКТИВНОСТЬ АГРОХИМИКАТА АМИНОКИМ МАРКИ АМИФОРТ В ТЕХНОЛОГИИ ВОЗДЕЛЫВАНИЯ РИСА

¹Н. В. Чернышева, ¹А. Я. Барчукова, ¹Я. К. Тосунов, ²В. А. Ладатко ¹Кубанский государственный университет им. И. Т. Трубилина, ул. Калинина 13, Краснодар, 350044, Россия ²Федеральный научный центр риса, поселок Белозерный 3, Краснодар, 350921, Россия

В условиях полевого опыта на лугово-черноземной почве экспериментального орошаемого участка ВНИИ риса выявлена биологическая эффективность органоминерального удобрения Аминоким марки Амифорт на рисе и установлена оптимальная норма $(1,5\,\pi/\text{га},\,\text{расход})$ рабочего раствора $-100\,\pi/\text{га})$. Проведение некорневой подкормки растений испытуемым препаратом двукратно (1-я в фазе кущения, 2-я в фазе трубкования) в оптимальной норме активизировало ростовые и формообразовательные процессы, что позволило сформировать максимальный урожай $(86,2\,\mu/\text{га},\,\text{на контроле}\,72,3\,\mu/\text{га},\,\text{HCP}_{0,5}\,-3,7\,\mu/\text{га})$ высококачественного зерна $(\text{натура}\,-540,0\,\text{г/л},\,\text{на контроле}\,-517,2\,\text{г/л},\,\text{HCP}_{0,5}\,-22,2\,\text{г/л};\,$ масса $1000\,$ зерен $-28,7\,$ г, на контроле $-26,7\,$ г, $HCP_{0,5}\,-1,2\,$ г; пленчатость $-16,6\,$ и $21,3\,$ %, стекловидность $-92,1\,$ и $86,5\,$ % соответственно).

Ключевые слова: рис, агрохимикат Аминоким марки Амифорт, некорневая подкормка, оптимальная доза, стимуляция, рост, структура урожая, урожайность, качество зерна.

DOI: 10.25680/S19948603.2021.118.04

Рис занимает лидирующее место среди продуктов питания для почти половины населения планеты, его употребляют в пищу более 3 млрд. человек. Общая площадь под рисом в мире составляет 160 млн га, средняя урожайность — 4,5 т/га. В России рис выращивают в Краснодарском, Приморском и Ставропольском краях, Астраханской и Ростовской областях, Республиках Адыгея, Дагестан, Калмыкия, Чеченская. Основным производителем риса в России является Краснодарский край, в котором посевы этой культуры размещены на площади 233,6 тыс. га, а сборы зерна в крае составляют 75 % общего сбора риса в России.

Потребность населения в рисовой крупе ежегодно возрастает и значительно отстает от ее производства, поэтому перед рисоводами ставится задача формирования высокопродуктивных посевов риса. Решение её возможно при внедрении новых ресурсосберегающих технологий, направленных на сокращение объемов применения пестицидов и агрохимикатов, нейтрализацию их остаточных количеств и замену на более безопасные и эффективные элементы, представляющие собой природные или синтетические регуляторы роста и развития растений или комплексы, состоящие из органических и минеральных (макро- и микро-) соединений, обогащенных витаминами, органическими и аминокислотами и другими физиологически активными веществами [1, 3, 8, 14, 18].

Согласно оценкам организации экономического сотрудничества и развития, прирост посевных площадей под рисом в мире сокращается, а следовательно увеличение его урожайности особенно актуально. В зарубежных странах для получения конкурентоспособного количества и качества сельскохозяйственной продукции широко используют в технологии возделывания сельскохозяйственных культур, в том числе риса, регуляторы роста растений, агрохимические комплексы и бактериальные биопрепараты.

Цель наших исследований – выявить влияние двукратной некорневой подкормки растений риса органоминеральным удобрением Аминоким марки Амифорт на его рост, урожайность и качество зерна. Данный агрохимикат в настоящее время проходит процедуру Госрегистрации.

Методика. Исследования, направленные на установление биологической эффективности агрохимиката Аминоким марки Амифорт, проводили на рисовой оросительной системе экспериментального орошаемого участка ВНИИ риса.

Почвы — лугово-черноземные типичные, характерные для Кубанской рисовой оросительной системы. Гранулометрический состав обычно глинистый. В поверхностном горизонте этих почв от 3,2 до 3,8 % гумуса, количество которого с глубиной убывает. Содержание в пахотном горизонте общего азота — 0,21-0,34 %, общего количества подвижного азота — от 0,01 до 0,03 %. рН почвенного раствора 6,7-7,8, т.е. почвы вполне пригодны для постановки научных исследований с культурой риса [6].

Объект исследования – рис сорта Аполлон, среднепоздний (вегетационный период 120-134 дня), устойчив к полеганию, среднеустойчив к осыпанию. Масса 1000 зерен – 26-29 г, средняя урожайность в Краснодарском крае – 78,5 ц/га. Технологические и кулинарные показатели качества зерна отличные.

Испытуемый препарат — Аминоким марки Амифорт — органоминеральное удобрение, содержащее в качестве питательных элементов: азот общий — 4,8 %, азот органический — 4,8, свободные аминокислоты — 25,0, фульвокислоты — 15,0, органическое вещество, всего — 40.0 %.

Схема опыта включала следующие варианты:

- 1. Контроль без обработки растений;
- 2. Аминоким марки Амифорт некорневая подкормка: 1-я в фазе кущения, 2-я в фазе трубкования (расход агрохимиката — 0.5 л/га, расход рабочего раствора — 100л/га);
- 3. Аминоким марки Амифорт некорневая подкормка: 1-я в фазе кущения, 2-я в фазе трубкования (расход агрохимиката — 1,0 л/га, расход рабочего раствора — 100л/га);

4. Аминоким марки Амифорт — некорневая подкормка: 1-я в фазе кущения, 2-я в фазе трубкования (расход агрохимиката — 1,5 л/га, расход рабочего раствора — 100л/га).

Учетная площадь делянок 25 м², повторность – четырехкратная. Предшественник – рис. Режим орошения риса – укороченное затопление.

Обработку растений риса испытуемым препаратом осуществляли ранцевым опрыскивателем в дозах и в сроки, указанные в схеме опыта.

Отбор растительных проб для определения высоты растений, биомассы и сухой массы надземных органов, числа и площади листьев проводили в фазе выметывания.

Урожай убирали в фазе полной спелости. Перед уборкой отбирали модельные снопы для биометрического анализа урожая (определяли: число продуктивных стеблей, длину метелок, озерненность — общую и число стерильных колосков, массу с растения зерна и соломы и их соотношение). Технологические показатели качества зерна (натуру, массу 1000 зерен, пленчатость, стекловидность и трещиноватость) определяли по установленным ГОСТам в средних пробах зерна, отобранных во время уборки.

Учет урожая зерна проводили сплошным обмолотом каждой делянки комбайном KUBOTA 300 с последующим пересчетом на стандартные влажность и чистоту.

Полученные данные обрабатывали методом дисперсионного анализа по Б. А. Доспехову [4].

Результаты и их обсуждение. Исследования показали, что некорневая подкормка растений риса испытуемым препаратом в фазы кущения и трубкования активизировала ростовые и продукционные процессы. Причем степень воздействия органоминерального удобрения Аминоким марки Амифорт на рост и формирование элементов структуры урожая в значительной степени зависела от воздействия на растения элементов, входящих в состав испытуемого препарата. Так, азот входит в состав аминокислот и, следовательно, всех без исключения белков, ферментов - биологических катализаторов, под влиянием которых протекают физиолого-биохимические процессы, в состав органических соединений и ростовых веществ типа гетероауксинов и других физиологически активных веществ. Потребность в этом элементе растения испытывают с момента прорастания семян. Азот, находящийся в листьях риса в фазе кущения, особенно в конце этой фазы, необходим конусу нарастания, превращающемуся в метелки, поэтому от него зависит число метелок и колосков на метелке. При недостатке азота тормозятся рост, побего- и листообразование [2, 5, 7].

Аминокислоты, являясь предшественниками гормональных субстанций, усиливают рост растений (корнеобразование, рост в высоту и нарастание вегетативной массы надземных органов, регулируют водный баланс растений, улучшают транспирацию), а в комбинации с физиологически активными растительными ингредиентами повышают стрессоустойчивость [9-11].

Все большего внимания заслуживают комплексные удобрения, в состав которых входят и гумусовые вещества (гумины, гуминовые кислоты и фульвокислоты) – органические вещества, которые более легко усваиваются при проведении некорневых подкормок. Это связано с тем, что они, быстро проникая через листовую поверхность, активизируют рост, обменные процессы,

увеличивают устойчивость растений к неблагоприятным факторам внешней среды и стрессовым ситуациям путем выработки специальных ферментов, улучшают биохимический состав растений и повышают урожай сельскохозяйственных культур [12-17].

Исходя из вышеописанного механизма действия входящих в состав испытуемого препарата элементов, нет сомнения в том, что двукратная подкормка им растений риса в фазы кущения и трубкования окажет положительное влияние на нарастание вегетативных органов культуры.

1. Влияние препарата Аминоким марки Амифорт на рост

растений риса							
Вариант	Высота растений, см	Листовой аппарат		Масса надземных органов, г/растение			
		число	площадь, см ³	сырая	сухая		
Контроль – без обра- ботки растений	67,7	4,1	52,34	7,56	2,00		
Амифорт – 2-кратная некорневая подкормка (0,5 л/га)	74,1	4,4	58,96	8,84	2,35		
Амифорт – 2-кратная некорневая подкормка (1,0 л/га)	75,6	4,5	64,36	9,12	2,56		
Амифорт – 2-кратная некорневая подкормка (1,5 л/га)	76,7	4,5	68,11	9,32	2,66		
HCP _{0,5}	3,5	0,2	2,83	0,39	0,11		

Представленные в таблице 1 данные убедительно свидетельствуют о высокой физиологической активности испытуемого препарата. Абсолютные значения всех представленных в таблице показателей роста растений существенно превзошли таковые контрольного варианта. В опытных вариантах, особенно с применением препарата в дозе 1,5 л/га, формировались более высокорослые и более облиственные растения, что и обусловило существенное повышение биомассы.

При этом следует отметить, что некорневая подкормка растений риса препаратом Аминоким марки Амифорт в указанные фазы вегетации не только усилила ростовые процессы, но и обеспечила закладку большего числа зерен и, как следствие, повышение массы зерна с растения – основных элементов структуры урожая

2. Влияние препарата Аминоким марки Амифорт на формирование элементов структуры урожая

формирование элементов структуры урожая								
Вариант	Длина	Число зерен на		Macca,		Отно-		
	метел-	1 растение		г/растение		шение		
	ки, см	общее в т. ч.		зер-	соло-	$m_{s/} m_c$		
			сте-	на,	мы,			
			риль-	m_3	m_c			
			ных					
			колос-					
			ков					
Контроль – без обработ-	11,7	148,1	36,4	3,03	3,65	0,83		
ки растений								
Амифорт – 2-кратная	13,2	179,0	38,0	3,71	4,31	0,86		
некорневая подкормка								
(0,5 л/га)								
Амифорт – 2-кратная	13,8	200,0	38,2	4,27	4,80	0,89		
некорневая подкормка								
(1,0 л/га)								
Амифорт – 2-кратная	15,0	220,4	40,5	4,82	5,18	0,93		
некорневая подкормка								
(1,5 л/га)								
HCP _{0,5}	0,7	9,1	1,7	0,18	0,21			

В опытных вариантах, как видно из таблицы 2, формировались метелки более крупные, большей озерненности и массы зерна с растения. Наиболее высокие значения элементов структуры урожая риса отмечены при проведении некорневых подкормок растений (в фазы кущения и трубкования) препаратом Аминоким марки Амифорт с нормой расхода 1,5 л/га. При этом следует отметить, что в опытных вариантах не только возрастает общая озерненность, но и снижается пустозерность (с 21,2 до 18,4 %, на контроле – 24,6 %). Увеличение зерновой продуктивности и уборочного индекса способствовало повышению урожайности культуры.

3. Влияние препарата Аминоким марки Амифорт на

урожайность риса					
Вариант	Урожайность,	Прибавка н	контролю		
	ц/га	ц/га	%		
Контроль – без обра-	72,3	-	-		
ботки растений					
Амифорт – 2-кратная	78,9	6,6	9,1		
некорневая подкормка					
(0,5 л/га)					
Амифорт – 2-кратная	83,7	11,4	15,8		
некорневая подкормка					
(1,0 л/га)					
Амифорт – 2-кратная	86,2	13,9	19,2		
некорневая подкормка					
(1,5 л/га)					
HCP _{0,5}	3,7				

Из данных таблицы 3 видно, что во всех опытных вариантах получена урожайность, существенно превысившая контрольный вариант. Максимальная прибавка отмечена в варианте с применением препарата в норме 1,5 л/га.

Технологические свойства риса-сырца в значительной степени влияют на общий выход крупы, кулинарные и потребительские качества. Технологическими показателями качества являются натура, масса 1000 зерен, пленчатость, стекловидность и трещиноватость. Крупность и выполненность зерна риса характеризуются массой 1000 зерен и натурой. Чем крупнее зерно, тем ниже процент пленчатости. На выход крупы и целого ядра влияют стекловидность и трещиноватость. И, как правило, чем выше стекловидность, тем меньше трещиноватость. Определение перечисленных показателей при анализе партий зерна риса при переработке его в крупу связано с тем, что настройка режимов сушки, работы зерноочистительных, шелушильных и сортировочных машин происходит с учетом размера зерен.

4. Влияние препарата Аминоким марки Амифорт на технологические показатели качества зерна риса

ческие показатели качества зерна риса							
Вариант	Натура,	Macca	Плен-	Стек-	Трещи-		
	Γ/Π	1000	ча-	ловид-	нова-		
		зерен, г	тость	ность	тость		
				%			
Контроль – без обра-	517,2	26,7	21,3	86,5	8,2		
ботки растений							
Амифорт – 2-кратная	528,1	27,4	20,1	89,2	7,6		
некорневая подкормка							
_(0,5 л/га)							
Амифорт – 2-кратная	533,3	28,1	19,3	89,9	7,1		
некорневая подкормка							
(1,0 л/га)							
Амифорт – 2-кратная	540,0	28,7	16,6	92,1	6,9		
некорневая подкормка							
(1,5 л/га)							
HCP _{0,5}	22,2	1,2					

Анализ данных таблицы 4 показывает, что во всех опытных вариантах, особенно с применением испытуемого препарата в норме 1,5 л/га, получено более крупное и выравненное, высокостекловидное зерно. Пленчатость и трещиноватость зерна в указанном варианте минимальные, что благоприятно скажется на общем выходе крупы и доли в ней целого ядра.

Заключение. Двукратная некорневая подкормка растений риса (в фазы кущения и трубкования) органоминеральным удобрением Аминоким марки Амифорт в норме 1,5 л/га эффективна, что обусловлено усилением ростовых и формообразовательных процессов, получением высококачественного зерна и максимальной прибавки урожая — 19,2 %, при урожайности на контроле — 72,3 ц/га.

Литература

- 1. *Барчукова А. Я.* Влияние регуляторов роста на урожайность и качество риса-сырца / А. Я. Барчукова, Н. В. Чернышева, С. Г. Фаттахов, А. И. Коновалов // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. 2009.-T.4-119 с.
- 2. *Брей С. М.* Азотный обмен в растениях / С. М. Брей. М.: Агропромиздат, 1986. 200 с.
- 3. *Гунавирдана Д. Н.* Формирование продуктивности риса в условиях засоления при обработке семян фузикокцином / Д. Н. Гунавирдана, А. Я. Барчукова, Т. Г. Леонова, Е. П. Алешин, Г. С. Муромцев. // Доклады ВАСХНИЛ. 1990 № 6. С. 17.
- 4. Доспехов Б. А. Методика полевого опыта / Б. А. Доспехов. М.: Колос, 1985. 351 с.
- 5. *Ерыгин П. С.* Физиология риса / П. С. Ерыгин // Физиология сельскохозяйственных растений. Т. 4. Физиология риса и кукурузы. М.: Изд-во МГУ, 1996. С. 266-414.
- 6. Жуков В. Д. К вопросу учета качественных характеристик сельско-хозяйственных угодий Краснодарского края / В. Д. Жуков, А. Х. Ше-уджен // Научное обеспечение агропромышленного комплекса. 2016. С. 25-26.
- 7. *Измайлов С. В.* Азотный обмен в растениях / С. В. Измайлов. М.: Наука, 1986. 320 с.
- 8. *Кайгородава Е. А.* Регуляторы роста растений в ряду производных никотиновой кислоты / Е. А. Кайгородова, А. Я. Барчукова, Е. С. Костенко, Н. В. Чернышева, С. А. Пестунова, Т. В, Гераськина. // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. 2014. №100. С. 177-208.
- 9. Кретович В. Л. Обмен азота в растениях. М.: Высшая школа, 1972.
- 10. *Кретович В. Л.* Биохимия растений. М.: Высшая школа, 1980. 447 с.
- 11. *Макрушин Н. М.* Физиология растений с основами биохимии / Н. М. Макрушин, Е. М. Макрушина, Н. В. Петорсон, М. Н. Мельников. Симферополь: Таврия, 2005.-544 с.
- 12. *Орлов Д. С.* Органическое вещество почвы и органические удобрения / Д. С. Орлов, И. Н. Лозановская, П. Д. Попов. М.: Изд-е Московского университета, 1985. 98 с.
- 13. *Орлов Д. С.* Свойства и функции гуминовых веществ. Гуминовые вещества в биосфере / Д. С. Орлов. М.: Наука, 1993.
- 14. *Христева Л. А.* Физиологическая функция гуминовой кислоты в процессах обмена веществ высших растений / Л. А. Христева. // Гуминовые удобрения: Теория и практика их применения. Харьков: Изд-во Харьк. университета, 1957. С. 95-108.
- 15. *Христева Л. А.* Действие физиологически активных гуминовых кислот на растения при неблагоприятных внешних условиях / Л. А. Христева // Гуминовые удобрение: теория и практика их применения. Днепропетровск, 1973. Т. 4. С. 5-23.
- 16. Христева Л. А. О проникновении гуминовых веществ в клетки растений / Л. А. Христева, А. Д. Фокин, Л. Ф. Бобырь и др. // Гуминовые удобрения: теория и практика их применения. Днепропетровск, 1997. Т. 5. С. 57-59.
 - 17. *Христева Л. А.* К природе действия физиологически активных гумусовых веществ на растения в экстремальных условиях / Л. А. Христева // Гуминовые удобрение: теория и практика их применения. Днепропетровск, 1977. Т. 6. С. 3-15.
 - 18. *Чернышева Н. В.* Влияние препарата гидрогумин на рост и развитие растений риса, урожайность и качество его зерна / Н. В. Чернышева, А. Я. Барчукова, В. В. Дирин. // Труды Кубанского государственного аграрного университета. 2016. № 62. С. 127-132.
 - 19. *Шакирова Ф. М.* Неспецифическая устойчивость растений к стрессовым факторам и ее регуляция [Книга] / Ф. М. Шакирова. Уфа: [б.н.], 2001.УДК: 631.8: 631.582: 631.445.24.

EFFICIENCY OF AMINOKIM AGROCHEMICALS OF AMIFORT BRAND IN RICE CULTIVATION TECHNOLOGY

N.V. Chernysheva¹, A.Ya. Barchukova¹, Ya.K. Tosunov², V.A. Ladatko²

¹Kuban State Agrarian University named after I.T. Trubilin, Kalinina ul. 13, 350044 Krasnodar, Russia;

²Federal Scientific Rice Centre, 350921 Belozerniy 3, Russia

Under the conditions of a field experiment on the meadow-chernozem soil of the experimental irrigated plot of the All-Russian Scientific and Research Institute of Rice, the biological effectiveness of the Aminokim organic fertilizer of the Amifort brand on rice was revealed and the optimal rate was established (1.5 l/ha, the consumption of the working solution – 100 l/ha). Carrying out foliar feeding of plants with the test drug twice (1st in the tillering phase, 2nd in the booting phase) at the optimal rate activated growth and form-forming processes, which made it possible to form the maximum yield (8.62 t/ha, control – 7,23 t/ha, $LSD_{0.5}$ – 0.37 t/ha) of high-quality grain (grain unit – 540.0 g/l, control – 517.2 g/l, $LSD_{0.5}$ – 22.2 g/l; weight of 1000 grains – 28.7 g, on the control – 26.7 g, $LSD_{0.5}$ – 1.2 g; filminess – 16.6 and 21.3%, vitreousness – 92.1 and 86.5%, respectively).

Key words: rice, agrochemical Aminokim, Amifort brand, foliar feeding, optimal dose, stimulation, growth, yield structure, yield, grain quality.

ВЛИЯНИЕ МИНЕРАЛЬНЫХ УДОБРЕНИЙ НА НИТРИФИКАЦИЮ ЧЕРНОЗЕМА ВЫЩЕЛОЧЕННОГО В ЛЕСОСТЕПИ ЗАУРАЛЬЯ

О.Н. Дёмина, Д.И. Еремин, д.б.н., Федеральное государственное бюджетное образовательное учреждение высшего образования «Государственный аграрный университет Северного Зауралья» 625003 г. Тюмень, ул. Республики,7

oksi.victorious@mail.ru

Представлены результаты исследований нитрификационной способности почв в зависимости от разного уровня минерального питания в посевах зерновых культур. Установлено, что в варианте без внесения удобрений (контроль) в среднем за весь период вегетации яровой пшеницы нитрификация почвы была невысокой — 12,5-10,0 мг/кг почвы. Следует отметить, что численность бактерий-нитрификаторов в весенний период была максимальной и составила 8 млн КОЕ/г почвы. На минимальном агрофоне (NPK на 3 т/га зерна) достоверных отличий от контроля не выявлено, нитрификационная активость почвы равна 10,0-14,0 мг/кг почвы. Численность олигонитрофилов в мае была так же максимальной и от контроля не отличалась. В варианте с внесением минеральных удобрений на планируемую урожайность 5 т/га зерна разница с контролем достигала 40%. Нитрификация почвы в этом варианте в слое 20-40 см была максимальной во всех вариантах и составила 20,7 мг/кг почвы. Содержание нитрифицирующих бактерий было высоким (8 млн КОЕ/г почвы) только в период цветения яровой пшеницы. Несмотря на то, что высокий агрофон оказывает благоприятное действие на общую численность олигонитрофилов, развитие нитрификационной способности почвы снижается. Так в варианте с внесением минеральных удобрений на планируемую урожайность зерна 6 т/га она составила всего 15,3-15,5 мг/кг.

Ключевые слова: потенциальное плодородие, нитрифицирующие бактерии, нитрификация, денитрификация, олигонитрофилы, аэробная микрофлора, минеральные удобрения.

DOI: 10.25680/S19948603.2021.118.05

Нитрификационная способность - одна из главных составляющих биологической активности почв. Она подвержена изменениям и зависит как от природных, так и от антропогенных факторов. Процесс нитрификации важное звено круговорота азота в почве. Он проходит за счет окисления органического азота в азотную кислоту и состоит из трех основных фаз. В первой фазе под влиянием микроорганизмов образуется аммиак (NH₃), во второй фазе аммиак окисляется нитрозными грибами Nitrosomonas в азотистую кислоту (HNO₂), и наконец, в третьей фазе азотистая кислота окисляется Nitrobacter в азотную кислоту (HNO₃). Нитрификация протекает только в аэробных условиях при незначительном дефиците влаги. При недостатке кислорода она затухает и начинается обратный процесс, при котором нитраты восстанавливаются до молекулярного азота с промежуточным образованием различных оксидов или аммиака. С точки зрения почвообразования денитрификация является нежелательным процессом, поскольку почва неминуемо теряет один из важных химических элементов.

При нитрификации образуются нитраты и нитриты, активно поглощаемые растениями. Еще на заре возник-

новения земледелия, в конце каменного века, люди интуитивно научились регулировать процесс нитрификации путем механической обработки почвы, при которой пахотный слой обогащается кислородом. В настоящее время такой способ регулирования аэробной микрофлоры не утратил своей актуальности, особенно в регионах с низкой активностью почвенной биоты [7].

Почвы Западной Сибири имеют свои региональные особенности, обусловленные суровым климатом и почвообразующими породами. Эффективное плодородие напрямую связано с деятельностью микрофлоры и накоплением питательных веществ. В Западной Сибири, вследствие продолжительной и суровой зимы, почвы довольно глубоко промерзают [2] и крайне медленно оттаивают в летний период. Исследования [6] показали, что глубина промерзания сибирских черноземов в отдельные годы может достигать 2,5 м и процесс их оттаивания продолжается до мая, а иногда и в июне. Это приводит к нарушению температурного режима и аэрации верхних слоев почв, поскольку талые воды не могут быстро уйти в глубь почвы, препятствуя проникновению воздуха. Как показали исследования ряда уче-