УДК 631.41: 631.812: 631.839

DOI: 10.25680/S19948603.2023.131.16

АГРОЭКОЛОГИЧЕСКАЯ ОЦЕНКА ЭФФЕКТИВНОСТИ ПРИМЕНЕНИЯ ГЛИНИСТО-СОЛЕВОГО ШЛАМА УСОЛЬСКОГО КАЛИЙНОГО КОМБИНАТА В АГРОЦЕНОЗАХ ЗЕРНОВЫХ КУЛЬТУР

Н.И. Аканова¹, д.б.н., Н.М. Троц², д.с.-х.н., В.Б. Троц², д.с.-х.н., А.С. Стромский³, А.А. Стромский ¹ФГБНУ «Всероссийский научно-исследовательский институт агрохимии им. Д. Н. Прянишникова» 127434, Москва, ул. Прянишникова, 31а, Россия ²ФГБОУ ВО «Самарский государственный аграрный университет» 446442, пгт. Усть-Кинельский, ул. Учебная, 1 ³000 «Про Тех Инжиниринг» 199106, Санкт-Петербург, 26я линия ВО, д.15, корп.2

Представлены результаты исследований эффективности использования отхода калийного производства глинисто-солевого шлама (Γ CШ), как калийного удобрения и химического мелиоранта на чернозёмах обыкновенных солонцеватых среднесуглинистых Самарской области. Применение Γ CШ на фоне $N_{40}P_{40}$ обеспечивает получение прибавки урожая зерна яровой мягкой пшеницы сорта Кинельская Нива 5,7-20,7%, или 0,13-0,61 т/га, твердой яровой пшеницы сорта Безенчукская 205 0,18-0,53 т/га, или 7,7-18,7%, максимальная урожайность как мягкой, так и твердой пшеницы получена при внесении 600 кг/га Γ CШ.

Ключевые слова: мелиорант, калийное удобрение, глинисто-солевой шлам, плодородие почв, яровая мягкая пшеница, яровая твердая пшеница, урожайность, качество зерна.

Для цитирования: Аканова Н.И., Троц Н.М., Троц В.Б., Стромский А.С., Стромский А.А. Агроэкологическая оценка эффективности применения глинисто-солевого шлама Усольского калийного комбината в агроценозах зерновых культур// Плодородие. -2023. -№2. - С. 71-75. DOI: 10.25680/S19948603.2023.131.16.

Одним из актуальных и практически значимых компонентов ресурсосберегающих технологий является использование отходов промышленности, в том числе калийсодержащего глинисто-солевого шлама ООО «ЕвроХим – Усольский калийный комбинат», в качестве удобрений и мелиорантов. Это способствует повышению урожайности сельскохозяйственных культур и улучшению агрохимических параметров почвы.

Цель работы – **дать** агроэкологическую **оценку** эффективности применения глинисто-солевого шлама (ГСШ) в посевах яровой пшеницы.

Исследования проводили с 2020 по 2022 г. В задачи исследований входило: выявить влияние различных доз ГСШ (400; 600 и 800 кг/га) на полевую всхожесть и сохранность растений яровой мягкой и яровой твердой пшеницы, особенности роста и развития растений, формирование элементов структуры урожая и продуктивность посевов; установить влияние ГСШ на агрохимические показатели плодородия почвы, динамику основных макроэлементов.

Методика. Для решения поставленных задач в 2020 г. был заложен полевой опыт на юго-востоке Кинельского района в верхней притеррасной части поймы правого берега р. Самара. Почва – чернозём обыкновенный солонцеватый среднесуглинистый с мощностью гумусового горизонта до 60 см. Сумма поглощенных оснований гумусового горизонта составляет ~ 30 мг-экв/100 г почвы, в составе поглощенных оснований преобладает кальций (92%). Реакция почвенной среды горизонта А 7,4-7,5 ед. рН, содержание гумуса 5,1%, подвижного фосфора — 19,0 мг, обменного калия — 25,4 мг/100 г почвы. Схема опыта включала пять вариантов (табл. 1).

Вид пше-	Сорт	Дозы внесения удобрений	Способ применения
ницы		, ,	
Мяг-	Кинель-	1. Контроль (без удобрений)	Расчетные дозы
кая	ская	2. N ₄₀ P ₄₀ (фон)	ГСШ вносили
	Нива	3. N ₄₀ P ₄₀ + ГСШ, 400 кг/га	под культива-
		4. N ₄₀ P ₄₀ + ГСШ, 600 кг/га	цию. $N_{20}P_{20}$ –
		5. N ₄₀ P ₄₀ + ГСШ, 800 кг/га	под культива-
Твер-	Безен-	1. Контроль (без удобрений)	цию, оставшую-
дая	чукская	2. N ₄₀ P ₄₀ (фон)	ся дозу $N_{20}P_{20}$ –
	205	3. N ₄₀ P ₄₀ + ГСШ, 400 кг/га	при посеве

4. N₄₀P₄₀ + ГСШ, 600 кг/га

5. $N_{40}P_{40} + \Gamma C III$, 800 кг/га

1. Схема полевого опыта с яровой пшеницей (2020-2022 г.)

В вариантах № 3-5 дозы ГСШ вносили на фоне применения Карбамида в дозе 31 кг/га — N д.в., аммофоса — 9 кг/га — N и 40 кг/га — P_2O_5 д.в. ГСШ вносили поверхностно тракторным разбрасывателем РУМ-1000 под культивацию почвы с последующей заделкой. Дозу внесения ГСШ определяли с учетом содержания K_2O (в пределах 10%).

Агротехника в опыте общепринятая для яровой пшеницы в Самарской области. Предшественник – горох. Объектами исследований были растения яровой мягкой пшеницы (ЯМП) сорта Кинельская Нива и яровой твердой пшеницы (ЯТП) сорта Безенчукская 205. Норма высева 4,5 млн всхожих семян на 1 га. Уход за посевами включал их обработку гербицидами против сорняков в фазе кущения. Уборку опытных делянок проводили селекционным комбайном TERRION – 2010. Общая площадь делянок 100 м², учетная – 80 м², повторность – четырехкратная, размещение вариантов систематическое.

Экспериментальная работа проводилась согласно методике опытного дела Б.А. Доспехова, методических указаний по проведению исследований в длительных опытах с удобрениями, методических требований к полевому опыту, основ научных исследований в агрономии.

Результаты и их обсуждение. Подсчётом взошедших растений весной 2021 г. установлена полевая всхожесть яровой мягкой пшеницы. Плотность стояния растений в соответствии с требованиями растениеводства вполне достаточна для формирования высокопродуктивного агрофитоценоза (табл. 2).

2. Густота стояния и сохранность растений

	2. 1 устота стояні				
		Густо	га, шт/м ²	Полевая	Сохран
Культура,			стояния	BCXO-	ность
сорт	Вариант опыта	BCXO-	растений	жесть	
Сорт		дов к		%	
		уборке	70		
		2021 г.			<u>.</u>
ЯМП	Контроль (б/у)	324	230	72,5	71,0
	N ₄₀ P ₄₀ (фон)	325	239	72,6	73,5
Кинельская	Фон + ГСШ,	328	244	72,8	74,4
Нива	400 кг/га				
	Фон + ГСШ,	325	250	72,3	76,9
	600 кг/га				
	Фон + ГСШ,	330	255	73,4	77,3
	800 кг/га			, i	ĺ
ПТК	Контроль	324	230	72,5	71,0
	N ₄₀ P ₄₀ (фон)	345	251	76,7	73,0
Безенчук-	Фон+ ГСШ,	342	256	76,0	74,9
ская 205	400 кг/га			,.	
	Фон +ГСШ,	345	259	76,7	75,2
	600 кг/га			, .	, _
	Фон + ГСП,	335	258	74,4	77,0
	800 кг/га			,	, .
HCP ₀₅		6,2			8,8
		2022 г.	I		
ЯМП	Контроль (б/у)	340	76,3	251	73,8
	N ₄₀ P ₄₀ (фон)	338	75,1	260	76,9
Кинельская	Фон+ГСШ,	335	74.4	265	79.1
Нива	400 кг/га		' ','		, -
	Фон+ГСШ,	339	75,3	270	79,6
	600 кг/га	007	, , , ,	2.0	,,,,
	Фон+ ГСШ,	337	74,8	272	80,7
	800 кг/га		, .,0		00,7
ПТК	Контроль	336	74,6	250	74,4
71111	N ₄₀ P ₄₀ (фон)	335	74.4	257	76,7
Безенчук-	Фон+ ГСШ.	332	73,7	259	78,0
ская 205	400 кг/га	332	75,7	237	70,0
J 200	Фон +ГСШ.	338	75,1	267	78,9
	600 кг/га	330	73,1	201	70,7
	Φ oh + Γ C Π ,	334	74,2	270	80,8
	800 кг/га] 55.	, ,,2	270	00,0
	ICP ₀₅	5,4			6,1
	⋾,च			0,1	

Примечание. Норма высева семян – 450 шт/м².

Какой-либо разницы в густоте стояния растений по вариантам опыта с внесением ГСШ, в посевах как мягкой, так и твердой пшеницы не обнаружено. Установлено, что густота стояния растений твердой пшеницы на фоне $N_{40}P_{40}$ в среднем на 5,7% больше контрольного варианта.

Густота стояния растений на 1 м^2 к уборке в посевах мягкой пшеницы снижалась до 230-255 шт., а в посевах твердой пшеницы — до 230-264 шт. Установлено, что в контрольном варианте мягкой пшеницы к уборке выживает 71% взошедших растений, а в вариантах с ГСШ на 14-25 растений больше, чем на контроле и на 5-16 шт., чем в фоновом варианте, наибольшая разница отмечалась при внесении 600 кг/га ГСШ— 250 шт/ м 2 и 800 кг/га — 255 шт/ м 2 .

Аналогичные закономерности прослеживались в посевах твердой пшеницы. Максимальная сохранность растений 75,2-77,0% отмечалась в вариантах с применением 600 и 800 кг/га Γ СШ – 260 и 264 шт/м² соответственно.

Подсчеты взошедших растений весной 2022 г., также не выявили достоверного влияния минеральных удобрений и ГСШ на их начальную густоту стояния. Число всходов по вариантам опыта было примерно равным и варьировало в посевах мягкой пшеницы от 335 до 340 шт/m^2 , что составляло 74,4-76,3% от общего числа высеянных семян (см. табл. 2).

Полевая всхожесть растений твердой пшеницы была немного ниже. При этом какой-либо существенной разницы по вариантам опыта не выявлено.

К началу уборки урожая густота стояния растений меняется: внесение 400 кг/га ГСШ позволило повысить сохранность растений мягкой и твердой пшеницы до 79,1 и 78,0% и увеличить число растений на 1 м 2 . Повышение доз ГСШ — до 600 и 800 кг/га увеличивает сохранность растений, что, соответственно, на 6,8-7,5 и 8,0-8,3% больше контроля.

Исследованиями 2021 г. выявлено, что яровая мягкая пшеница, даже при дефиците атмосферной влаги, способна формировать в условиях Самарской области на слабощелочных черноземных почвах достаточно высокие урожаи зерна (табл. 3).

3. Урожай зерна пшеницы Вариант Яровая мягкая Яровая твердая опыта пшеница пшеница Сорт Кинельская Нива Сорт Безенчукская 205 урожай прибавка урожай прибавка верна, т/га т/га % зерна, т/га т/га 2021 г Контроль (б/у) 2,26 2,31

$N_{40}P_{40}(\phi o H)$	2,32	0,06	2,6	2,40	0,09	3,8			
$N_{40}P_{40} + \Gamma C I I I, 400$	2,39	0,13	5,7	2, 49	0,18	7,7			
кг/га									
$N_{40}P_{40} + \Gamma C I I I, 600$	2,46	0,20	8,8	2,55	0,24	10,3			
кг/га									
$N_{40}P_{40} + \Gamma C I I I, 800$	2,51	0,25	10,1	2,69	0,38	16,4			
кг/га									
HCP ₀₅	0,15	-	ı	0,18	-	i			
2022 z.									
Контроль	2,94	-	-	2,82	-	-			
N ₄₀ P ₄₀ (фон)	3,20	0,26	8,8	3.03	0,21	7,4			
$N_{40}P_{40} + \Gamma C I I I, 400$	3,36	0,42	14,2	3,15	0,33	11,7			
кг/га									
$N_{40}P_{40} + \Gamma C I I I, 600$	3,45	0,51	17,3	3,24	0,42	14,8			
кг/га									
$N_{40}P_{40} + \Gamma C I I I, 800$	3,55	0,61	20,7	3,35	0,53	18,7			
ren/no	1	1			1				
кг/га									

Внесение 400 кг/га ГСШ на фоне $N_{40}P_{40}$ повышает сборы зерна на 5,7%, или на 0,13 т/га по сравнению с контролем. Внесение 600 кг/га ГСШ способствовало оптимизации минерального питания растений и росту урожая зерна на 3,0%, что на 8,8% больше контроля. Применение 800 кг/га ГСШ обусловило получение наибольших сборов зерна 2,51 т/га — на 2% выше значения предыдущего варианта. Прибавка по отношению к контролю составила 0,25 т/га, или 10,1%.

Анализ урожайности в посевах твердой пшеницы показал, что она оказалась в среднем на 2,2-7,1% больше посевов мягкой пшеницы. Внесение 400 кг/га ГСШ обеспечило сборы зерна на 7,7% больше значений контроля. В вариантах с внесением 600 и 800 кг/га ГСШ

получена урожайность, соответственно, на 10,3 и 16,4% выше контроля.

Погодные условия 2022 г. способствовали получению достаточно высоких урожаев зерна яровых пшениц. Они были в среднем на 22,0-41,4% выше, чем в 2021 г. Внесение 400 кг/га ГСШ способствовало увеличению продуктивности посева на 14,2 и 11,7%, повышение дозы внесения ГСШ до 600 кг/га позволило дополнительно, по сравнению с контролем, получать 0,51 и 0,42 т/га, или больше, соответственно, на 17,3 и 14,8%. Внесение 800 кг/га ГСШ обеспечивало получение максимальных сборов зерна с 1 га. Урожай зерна в опыте с мягкой и твердой пшеницей был на 20,7 и 18,7%, или на 0,61 и 0,53 т/га соответственно больше контроля.

Растения твердой пшеницы в сравнительно жарких и засушливых условиях 2021 г. обеспечили прибавку урожая, по сравнению с мягкой пшеницей, в среднем 2,2-7,2%. В условиях достаточного влагообеспечения вегетационного периода 2022 г. сборы зерна твердой пшеницы были на 4,2-5,9% меньше, чем в вариантах с мягкой пшеницей. Однако, независимо от погодных условий, добавление ГСШ позволяло увеличить урожай зерна на 0,18-0,53 т/га, или на 7,7-18,7%. Максимальная урожайность, как мягкой пшеницы, так и твердой получена в варианте с внесением 600 и 800 кг/га ГСШ.

Исследованиями, проведенными в 2021 г. выявлено, что число продуктивных стеблей в опыте с мягкой пшеницей варьирует, коэффициент продуктивной кустистости не зависел от доз внесения ГСШ (табл. 4).

4. Структура урожая зерна									
Сорт	Вариант	Число на 1 м ²		Коэффициент	Число	Macca			Биологическая
	опыта	растений к	продуктив-	продуктивного	зерен в	зерна	зерен, г/м ²	1000	урожайность,
		уборке	ных стеблей	кошения	колосе	колоса, г		зерен, г	т/га
				2021 г.					
ЯМП	Контроль (без удобрений)	230	481	2,0	17,5	0,54	260	30,8	2,60
ліміт Ки-	N ₄₀ P ₄₀ (фон)	239	450	1,9	17,7	0,60	270	32,0	2,70
ки- нельска	Фон + ГСШ, 400 кг/га	244	462	1,9	18,0	0,62	287	34,6	2,87
Нява	Фон + ГСШ, 600 кг/га	250	460	1,8	18,1	0,64	295	35,8	2,95
Пива	Фон + ГСШ, 800 кг/га	255	462	1,8	18,5	0,67	310	36,6	3,10
ПТК	Контроль (без удобрений)	230	430	1,8	14,2	0,66	284	46,4	2,84
Безен-	N ₄₀ P ₄₀ (фон)	251	417	1,7	14,4	0,70	292	48,6	2,92
чукская	Фон + ГСШ, 400 кг/га	256	413	1,6	15,0	0,75	310	50,0	3,10
205	Фон + ГСШ, 600 кг/га	259	406	1,6	15,5	0,79	321	51,2	3,21
	Фон + ГСШ, 800 кг/га		404	1,6	15,9	0,82	331	52,0	3,31
HCP ₀₅		2,8	5,2	-	0,8	0,31	8,6	0,72	0,25
				2022 г.					
ПМК	Контроль (без удобрений)	251	500	2,0	19,0	0,62	310	32,6	3,10
Кинель-	- N ₄₀ P ₄₀ (фон)	260	550	2,1	19,5	0,64	352	33,0	3,52
ская	Фон + ГСШ, 400 кг/га	265	550	2,1	19,8	0,66	363	33,6	3,63
Нива	Фон + ГСШ, 600 кг/га	270	549	2,0	19,9	0,69	379	34,8	3,79
	Фон + ГСШ, 800 кг/га	272	555	2,0	20,1	0,72	400	36,2	4,00
ПТК	Контроль (без удобрений)	250	516	2,0	16,3	0,62	320	38,4	3,20
Безенчун	<- N ₄₀ P ₄₀ (фон)	257	473	1,9	16,8	0,67	335	40,3	3,35
ская 205	Фон + ГСШ, 400 кг/га	259	477	1,8	16,9	0,74	350	43,8	3,50
	Фон + ГСШ, 600 кг/га	267	474	1,8	17,1	0,77	365	45,2	3,65
	Фон + ГСШ, 800 кг/га	270	473	1,8	17,2	0,79	374	46,0	3,74
HCP ₀₅		3,8	6,7	-	0,7	0,22	7,8	0,66	0,18

Анализ данных по числу зерен в колосе показал, что их количество варьирует в вариантах с внесением 600 и 800 кг/га ГСШ. Установлено, что с повышением уровня агрофона в почве увеличивается и абсолютная масса зерна (масса 1000 зерен) по сравнению с контролем. Масса зерна с одного колоса в этих вариантах была в среднем на 18,5 и 24,0% больше контроля.

Число продуктивных колосьев на 1 м² и масса зерна с одного колоса определяли биологическую урожайность на 1 м² опытных посевов. В фоновом варианте она была на 3,8% больше контрольного индекса. В вариантах с применением ГСШ она возрастала на 6,2,-14,8% по сравнению с фоновым вариантом, а по отношению к контролю – на 10,3-19,2%.

Урожай зерна с 1 м² посевов в конечном итоге обуславливал биологическую урожайность 1 га посевов. Она оказалась в среднем на 19,3-25,0% больше фактически полученной при комбайновой уборке. Очевидно, часть зерна была потеряна при скашивании растений и их обмолоте. Однако, выявленные ранее закономерности роста продуктивности растений по мере увеличения дозы внесения ГСШ сохранялись. Наибольшая биологическая урожайность получена в вариантах с внесением 600 и 800 кг/га ГСШ.

Анализ данных структуры урожая твердой пшеницы показал, что в отличие от мягкой пшеницы, она меньше кустится, коэффициент кущения по вариантам варьировал. Наименьшим было и число зерен в колосе, в среднем на 2,6-3,3, однако они были более тяжеловесными, масса 1000 зерен в 1,4-1,5 раза превышала массу зерна мягкой пшеницы.

В опытах с твердой пшеницей прослеживались те же закономерности, что и в посевах с мягкой пшеницей: наибольшее количество зерен в колосе, их масса на 1 m^2 и масса 1000 зерен отмечены в вариантах с внесением 600 и 800 кг/га ГСШ.

Исследованиями в 2022 г. установлено, что при относительно благоприятных погодных условиях коэффициент продуктивной кустистости изучаемых сортов яровой пшеницы варьировал от 1,8 до 2,1. Лучше кустилась мягкая пшеница. В посевах твердой пшеницы число продуктивных стеблей было в среднем на 7,5-16.0% меньше показателей мягкой пшеницы.

Выявлено, что число зерен в колосе мягкой пшеницы варьировало в среднем от 19 до 20,1. При внесении 400 кг/га ГСШ повышается озерненность колоса по сравнению с контролем и фоновым вариантом. Применение 600 и 800 кг/га ГСШ способствовало формированию

колосьев с максимальным количеством зерна. С увеличением количества зерен в колосе возрастала масса зерна с одного колоса. При этом масса зерна с 1 м² в этих вариантах в среднем была на 22,2 и 29,0% больше чем на контроле и на 7,6 и 13,6% больше фонового варианта.

Обмолот контрольных снопов выявил, что урожайность варьировала. При этом максимальные показатели получены при внесении 600 и 800 кг/га ГСШ, что, соответственно, на 22,2 и 29,0% больше контроля, и на 7,6 и 13,6% — фонового варианта.

Установлено, что яровая твердая пшеница имеет меньший коэффициент кущения, что является характерной видовой особенностью. Колос пшеницы был короче, а его озернённость в среднем на 16,6-16,8% меньше. Однако, зерно этого сорта было крупнее и тя-

желее – на 17,7-27,0% больше, чем у яровой мягкой пшеницы.

Максимальное число зерен в колосе, наибольшая масса зерна с одного колоса и масса зерна с 1 м² посева были в вариантах с внесением 600 и 800 кг/га ГСШ. Эти же варианты обеспечили формирование наибольшей биологической урожайности, соответственно, на 14,0 и 16,8% больше показателя контроля и на 8,9 и 11,6% фонового варианта.

Анализ качества зерна мягкой пшеницы урожая в 2021 г. показал, что внесение в почву $N_{40}P_{40}$ в сочетании с ГСШ сказывается на повышении натуры в вариантах с внесением 600 и 800 кг/га ГСШ. Заметное повышение объемной массы зерна отмечалось и при внесении 400 кг/га ГСШ (табл. 5).

5. Качество зерна яровой пшеницыМасса Белок %

Культура	Вариант	Натура,	Macca	Белок, %	Каратиноиды,	Клейковина		
Сорт	опыта	г/л	1000 зерен, г		мг%	%	ИДК,у.ед.	группа
	•		2021	г.				
ЯМП	Контроль (б/у)	809	30,8	14,25	-	32,4	85	2
Кинельская	N ₄₀ P ₄₀ (Фон)	811	32,0	13,85	-	31,2	79	2
Нива	Фон + ГСШ 400 кг/га	814	34,6	13,05	-	28,8	87	2
	Фон + ГСШ 600 кг/га	820	35,8	13,05	-	28,3	85	2
	Фон + ГСШ 800 кг/га	829	36,6	12,65	-	27,5	84	2
ПТК	Контроль (б/у)	803	46,4	13,11	449,1	25,1	108	3
Безенчукская	N ₄₀ P ₄₀ (Фон)	806	48,6	13,65	440,7	26,5	106	3
205	Фон+ ГСШ 400 кг/га	812	50,0	13,85	460,6	26,4		
	Фон +ГСШ 600 кг/га	817	51,2	13,72	465,7		Не отмывалас	Ъ
Фон + ГСШ 800 кг/га		821	52,0	13,75	432,4	Не отмывалась		
HCP ₀₅		6,5	0,66	0,31	5,6			
			2022	? г.				
ЯМП	Контроль (б/у)	760	32,6	13,14	-	31,8	86	2
Кинельская	N ₄₀ P ₄₀ (Фон)	775	33,0	13,00	-	30,6	82	2
Нива	Фон + ГСШ 400 кг/га	779	33,6	12,70	-	29,7	80	2
	Фон +ГСШ 600 кг/га	780	34,8	12,60	-	28,5	83	2
	Фон + ГСШ 800 кг/га	792	36,2	12,53	-	26,4	82	2
ПТК	Контроль (б/у)	770	38,4	14,16	440,8	25,8	100	2
Безенчукская	N ₄₀ P ₄₀ (Фон)	778	40,3	13,80	435,6	24,6	106	3
205	Фон + ГСШ 400 кг/га	782	43,8	13,71	460,3	24,0	99	2
	Фон + ГСШ 600 кг/га	786	45,2	13,40	454,8	23,8	101	3
	Фон + ГСШ 800 кг/га	795	46,0	13,16	438,4	23,6	98	2
	HCP ₀₅	4,4	0,45	0,27	5,9			

Растения твердой пшеницы способны формировать зерно с большей объемной массой. При этом наибольшая натура зерна была в вариантах с 600 и 800 кг/га ГСШ, что больше контроля, соответственно, на 1,7 и 2,2%.

С увеличением урожайности пшеницы сорта Кинельская Нива содержание белка в зерне снижается в среднем на 2,8-12,6%. Такая закономерность характерна для всех вариантов применения ГСШ. Минимальный уровень белка отмечен в зерне с делянок, где вносили 800 кг/га ГСШ.

У растений твердой пшеницы, наоборот снижение концентрации белка в зерне не прослеживалось. Она даже увеличивалась на удобренных вариантах, по сравнению с контролем, в среднем на 4,1-4,8%. Это связано, очевидно, с особенностями биологии данного вида пшеницы.

Анализ содержания клейковины в зерне мягкой пшеницы подтвердил результаты выявленных ранее закономерностей. Наибольшее ее количество имело зерно контрольного варианта. Зерно вариантов с внесением 400-600 кг/га ГСШ содержало примерно равное количество клейковины. ИДК клейковины в опыте соответствовало требованиям 2-й группы качества.

В зерне твердой пшеницы оценивалось содержание каратиноидов, веществ определяющих цвет макаронных изделий. При этом каких-либо закономерностей их вариаций по вариантам опыта не выявлено.

В вариантах с внесением 600 и 800 кг/га ГСШ клейковина не отмывалась, а в вариантах, где она отмывалась ИДК оказался >101. В результате клейковина соответствовала только 3-й группе качества.

Анализ качества зерна в 2022 г. показал, что его натура немного ниже, чем у зерна урожая 2021 г. В вариантах с мягкой пшеницей масса зерна в 1 л была на 4,6-6,4% меньше показателей 2021 г. В соответствии с существующей классификацией, это зерно можно отнести к группе высоко натурного зерна. Внесение 400 кг/га ГСШ увеличивало натурную массу зерна на 2,5%. Достаточно ощутимая прибавка в натурной массе зерна отмечалась при внесении 800 кг/га ГСШ.

Натура зерна твердой пшеницы варьировала, наименьшая отмечалась в контрольном варианте, а наибольшая в варианте с $800~\rm kr/ra$ ГСШ, с разницей в 3,2% или $25~\rm r/n$. Также, как и в вариантах с мягкой пшеницей натура зерна возрастала по мере увеличения доз применения ГСШ с $400~\rm do$ $800~\rm kr/ra$ — в среднем на 1,5-3,2%.

Анализ данных массы 1000 зерен выявил, что у сорта Кинельская Нива она варьирует, с повышением доз применения до 600 и 800 кг/га ГСШ отмечено её увеличение на 6,7 и 11,0% по сравнению с контрольным показателем. Масса 1000 зерен у сорта Безенчукская 205 была в среднем на 23,6-27,0% больше, чем у сорта мягкой пшеницы. Но, как и в 2021 г., показатель повышался с ростом доз внесения ГСШ с 400 до 800 кг/га, или по отношению к контролю на 14,0-19,7%.

Наибольшее количество белка в зерне отмечено в контрольном и фоновом вариантах. В удобренных вариантах его концентрация уменьшалась у сорта Кинельская Нива на 1,0-4,8%, у сорта Безенчукская 205—на 2,6-7,5%, достигая минимального значения при внесении 600 и 800 кг/га ГСШ.

Количество каратиноидов в зерне сорта Безенчукская 205 варьировало, но в соответствии с предъявляемыми требованиями к зерну данного вида пшеницы было вполне достаточным для производства качественных продуктов питания.

В опытах с мягкой пшеницей содержание клейковины уменьшалось на 20,4%. В вариантах с твердой пшеницей количество клейковины варьировало. При этом наибольшее ее количество отмечалось в контрольном варианте, а наименьшее в повышенно-удобренном варианте, разница достигала 9,3%.

Индекс деформации клейковины (ИДК) в урожае опытных вариантов соответствовал 2-й и 3-й группам качества.

Заключение. По результатам двухлетних исследований можно сделать вывод, что внесение $N_{40}P_{40}$ способствует увеличению числа зерен в колосе яровой мягкой пшеницы и яровой твёрдой пшеницы в среднем на 1,1-3,0%, массы зерна колоса – на 3,2-11,1, массы 1000 зерен – на 1,2-4,9, массы всех зерен с 1 м^2 и биологической урожайности яровой пшеницы на 2,8-13,5%. Добавление к фону ГСШ приводит к дальнейшему росту параметров структуры урожая: максимальное число зерен в колосе – 18,1-19,9 и 15,9-20,1, их масса – 0,64-0,79 и 0,67-0,82 г, а также масса 1000 зерен отмечены у растений вариантов с внесением 600 и 800 кг/га ГСШ. Их биологическая урожайность оказалась в среднем, соответственно, на 13,0-22,2 и 16,5-29,0% больше показателя контрольного варианта и на 7,6-9,9 и 11,1-14,8% - фонового варианта. Применение ГСШ оказывает влияние на увеличение натуры зерна и его абсолютной массы. Зерно с высокой объемной массой у мягкой пшеницы – 780-829 г/л и массой 1000 зерен 34,8-36,6 г получено в вариантах с внесением 600 и 800 кг/га ГСШ. Аналогичные показатели у твердой пшеницы в этих же вариантах опыта равнялись, соответственно, 795-821 г/л и 46,0-52,0 г.

Литература

- 1. *Кирейчева*, *Л.В.* Обоснование использования удобрительномелиорирующей смеси на основе торфа и сапропеля для повышения плодородия деградированных почв / Л.В. Кирейчева, А.В. Нефедов, Д.В. Виноградов и др. // Вестник Рязанского государственного агротехнологического университета им. П.А. Костычева. 2016. № 3 (31). С. 12-17.
- 2. *Виноградов, Д.В.* Экологические аспекты охраны окружающей среды и рационального природопользования / Д.В. Виноградов, А.В. Ильинский, Д.В. Данчеев. М., 2017. 128 с.
- 3. *Габибов, М.А.* Агроэкологические приемы повышения продуктивности севооборота / М.А. Габибов //Вестник Воронежского ГАУ. 2017.-N2. С. 40-44.
- 4. *Ващенко, И.М.* Полевая практика по биологическим основам сельского хозяйства (растениеводство, овощеводство, плодоводство): учебное пособие / И.М. Ващенко, М.А. Габибов. Рязань: РГУ им. С.А. Есенина, 2009. 356 с.
- 5. *Габибов, М.А.* Энергосберегающие технологии производства сельскохозяйственной продукции / М.А. Габибов//Зерновое хозяйство.— 2006.— N 2. С. 5-6.
- 6. *Прокошев, В.В.* Калий и калийные удобрения / В.В. Прокошев, И.П. Дерюгин. М.: Ледум, 2000.-185 с.
- 7. Liu, X., P. He, J. Jin, W. Zhou, G. Sulewski, and S. Phillips. 2011. Yield gaps, indigenous nutrient supply, and nutrient use efficiency of wheat in China. Agron. J. 103:1452-1463.
- 8. Иванова С.Е., Романенков В.А., Никитина Л.В. Первые результаты научного проекта по совершенствованию рекомендаций по внесению калийных удобрений в России//Ключевой элемент. 2014. №1. С. 6-10
- 9. *Кулаковская Т.Н.*, Оптимизация агрохимической системы почвенного питания растений. М.: Агрохимиздат, 1990. 219 с.
- 10. *Прокошев В.В., Дерюгин И.П.* Калий и калийные удобрения. М.: Ледум, 2000. 184 с.
- 11. Ониани О.Г., 1981. Агрохимия калия. М.: Изд-во МГУ. 200 с.
- 12. Чуб М.П. Определение потребности яровой пшеницы в удобрениях в зависимости от погодных факторов и содержания в почве подвижных элементов питания. В кн.: Эффективность удобрений и повышение плодородия почв в засушливом Поволжье. Саратов: НИ-ИСХ Юго-Востока, 1986. С. 4-19.
- 13. Доспехов Б.А. Методика полевого опыта. 5 изд., перераб. и доп. М.: Агропромиздат, 1985. 351 с.
- 14. Методические указания по проведению исследований в длительных опытах с удобрениями / ВАСХНИЛ, ВНИИ удобрений и агропочвоведения им. Д. Н. Прянишникова. М.: ВИУА, 1983. 22 с.
- 15. *Методические* требования к полевому опыту. [Электронный ресурс]: Режим доступа:https://poznayka.org/s65985t2.html (дата обращения 12.05.2021 г.).

UDC 631.41: 631.812: 631.839

AGROECOLOGICAL ASSESSMENT OF THE EFFECTIVENESS OF THE USE OF CLAY-SALT SLUDGE OF THE USOLSKY POTASH PLANT IN AGROCENOSES OF GRAIN CROPS

N.I. Akanova¹, D.B.N., N.M. Trots², D.S.-H.N., V.B. Trots², D.S.-H.N., A.S. Stromskiy³, A.A. Stromskiy³

¹FGBNU "D. N. Pryanishnikov All-Russian Research Institute of Agrochemistry",

31a Pryanishnikova str., Moscow, 127434, Russia

²Samara State Agrarian University

446442, village. Ust-Kinelsky, Uchebnaya str., 1

³OOO "Pro Tech Engineering"

199106, St. Petersburg, 26th line VO, 15, bldg.2

The results of studies of the effectiveness of the use of waste potash production of clay-salt sludge (GSS) as a potassium fertilizer and chemical reclamation on the chernozems of ordinary saline medium loamy of the Samara region are presented. The use of GSS against the background of N40P40 provides an increase in the yield of grain of spring soft wheat of the Kinelskaya Niva variety of 5.7-20.7%, or 0.13-0.61 t/ha, durum wheat of the Bezenchukskaya grade 205 0.18-0.53 t/ha, or by 7.7-18.7%, the maximum yield of both soft and hard wheat is obtained by applying 600 t/kg/ha of GSS.

Keywords: production waste, land reclamation, potash fertilizer, clay-salt sludge, soil fertility, spring soft wheat, spring hard wheat, yield, grain quality.