УДК 631.81:634.582:631.445.2

ПРОДУКТИВНОСТЬ СЕВООБОРОТОВ, БАЛАНС ЭЛЕМЕНТОВ ПИТАНИЯ И ИЗМЕНЕНИЕ ПЛОДОРОДИЯ ДЕРНОВО-ПОДЗОЛИСТОЙ СУПЕСЧАНОЙ ПОЧВЫ ПРИ ДЛИТЕЛЬНОМ ПРИМЕНЕНИИ УДОБРЕНИЙ

В.В. Лапа, Н.Н. Ивахненко, Институт почвоведения и агрохимии

Приведены результаты 22-летнего стационарного полевого опыта на дерново-подзолистой супесчаной почве с оптимальным содержанием подвижных фосфора и калия по продуктивности, окупаемости удобрений, балансу элементов питания и изменению параметров плодородия на протяжении нескольких ротаций севооборотов. Показано, что при среднегодовой продуктивности севооборотов на уровне 71-87 и к.е/га внесение фосфорных и калийных удобрений не обеспечивает сохранение содержания этих элементов на первоначальном уровне. При возрастании доз азотных удобрений кислотность пахотного слоя увеличивалась, а содержание подвижных фосфора и калия уменьшалось.

Ключевые слова: длительный полевой опыт, система удобрения, севооборот, плодородие, агрохимические показатели.

Сохранение и воспроизводство плодородия пахотных почв – задача исключительной важности, особенно в современных условиях ведения сельского хозяйства при дефиците удобрений и их высокой стоимости. Применение минеральных и органических удобрений, наряду с воздействием на общий уровень урожайности сельскохозяйственных культур, является наиболее существенным фактором, способствующим сохранению и повышению плодородия почв. В условиях дерново-подзолистых супесчаных почв Республики Беларусь урожайность сельскохозяйственных культур в значительной степени определяется плодородием почв и применением удобрений. При нынешнем уровне плодородия почв в Республике за счет минеральных и органических удобрений формируется около 45 % урожайности сельскохозяйственных культур.

Система удобрения в севообороте основана на нескольких показателях эффективности: агрономической, когда требуется получить максимальную продуктивность сельскохозяйственных культур и окупаемость применяемых удобрений; экономической, в основу которой положен принцип наибольшей рентабельности и чистого дохода от применения удобрений; экологической, предусматривающей сохранение необходимых экологических нормативов и т. д. Однако любая система удобрения должна быть направлена на сохранение, а при необходимости и повышение плодородия почвы, что не всегда соответствует остальным показателям эффективности и, в первую очередь, агроэкономическим. Оценить правильность систем удобрения можно только в условиях их длительного применения в севооборотах. Существенное значение для обоснования наиболее эффективных уровней применения удобрений и целенаправленного регулирования почвенного плодородия имеют балансовые расчеты. Уровень применения удобрений в севооборотах, обеспечивающий их максимальную продуктивность и благоприятный баланс элементов питания, может быть важным нормативным материалом при разработке мероприятий по сохранению или повышению плодородия почвы [1–5].

Цель исследований — разработать агрохимическую модель формирования высокой урожайности сельскохозяйственных культур, обеспечивающую рациональное использование почвенных запасов элементов питания, окупаемость 1 кг NPK 8-10 к. е., получение растениеводческой продукции, сбалансированной по основным макро- и микроэлементам в соответствии с нормативными требованиями.

Методика. В 1987-2009 гг. в ГП «Экспериментальная база им. А.В.Суворова» в Узденском районе Минской области в длительном стационарном полевом опыте на дерновоподзолистой супесчаной, подстилаемой с глубины 0,3-0,5 м песком, почве изучали эффективность доз азотных удобрений на фоне фосфорных и калийных. Почва хорошо обеспечена фосфором и калием. Опыт развернут в пространстве в двух полях со следующим чередованием культур в севооборотах: 1987-1999 гг.: 1 – кормовая свекла (картофель); 2 – ячмень; 3 – озимая рожь; 4 – овес (яровая пшеница); 1999-2004 гг.: 1 – картофель; 2 – ячмень; 3 – озимая рожь с подсевом клевера; 4 клевер; 5 – озимая тритикале; 2005-2009 гг.: 1 – горохоовсяная смесь; 2 – ячмень; 3 – озимая рожь с подсевом клевера; 4 – клевер; 5 – озимая тритикале. Перед закладкой опыта почва пахотного слоя имела следующую агрохимическую характеристику: pH_{con} 5,6-5,9, гидролитическая кислотность 2,11-2,29 мг-экв/100 г почвы, сумма обменных оснований 6,12-6,37 мг-экв/100 г почвы, содержание подвижных форм фосфора 120-150 и калия 200-250 мг/кг, нитратного азота 5,0-7,0 мг/кг, гумуса 2,4-2,5%. Осенью 1986 и 1987 гг. почву известковали доломитовой мукой в дозах, рассчитанных на доведение рНсол по делянкам до 6,0, а также вносили фоном (75 т/га) торфонавозный компост. Минеральные удобрения (аммиачную селитру, двойной суперфосфат, калий хлористый) применяли под предпосевную культивацию согласно схеме опыта. Осенью 1991, 1992, 1994, 1995, 1998, 1999 гг. под картофель и 2003, 2004 гг. под горохоовсяную смесь внесли соломистый навоз КРС.

Химический анализ органических удобрений выполнен в соответствии с государственными отраслевыми стандартами: определение влаги и сухого остатка – ГОСТ 26713–85, золы – ГОСТ 26714–85, общего азота – ГОСТ 26715-85, общего фосфора – ГОСТ 26717–85, общего калия – ГОСТ 26718–85. Удобрения (карбамид, аммонизированный суперфосфат и хлористый калий) вносили в 3, 4,- и 5-й ротациях севооборотов под предпосадочную и предпосевную культивации согласно схеме опыта на фоне действия и последействия навоза крупного рогатого скота (КРС).

Общая площадь делянки 45 м², учетная для зерновых — 32, для пропашных — 22,4 м², повторность вариантов — четырех-кратная. Предпосадочную и предпосевную обработки почвы и уход за растениями осуществляли в соответствии с отраслевыми регламентами [6]. В опыте применяли интегрированную систему защиты растений от сорняков, болезней и вредителей.

Анализ почвенных и растительных образцов проводили в соответствии с общепринятыми методиками: гидролитическую кислотность по Каппену, сумму обменных оснований по Каппену-Гильковицу, подвижный фосфор и калий в почве по методу Кирсанова, обменные кальций и магний методом ЦИНАО на атомно-абсорбционном спектрофотометре (ГОСТ 26570–95, ГОСТ 305–97), гумус по Тюрину в модификации ЦИНАО; в растительных образцах после мокрого озоления проб в смеси серной кислоты и пергидроля определяли азот и фосфор фотоколориметрическим индофенольным и ванадиево-молибдатным методами (ГОСТ 26657–85), калий на пламенном фотометре (ГОСТ 30504-97).

Результаты и их обсуждение. Продуктивность отдельных культур и их качество рассмотрены в ранее опубликованных

Плодородие 5 2014

работах [7-10]. Продуктивность севооборотов в пяти полях и окупаемость удобрений приведены в таблице 1.

Максимальная среднегодовая продуктивность сельскохозяйственных культур за пять ротаций получена при применении $N_{94}P_{86}K_{138}$ и $N_{106}P_{53}$ K_{94} , при этом 25,1 ц к.е/га формировалось за счет NPK, окупаемость 1 кг NPK составила 7,9 к.е. и 9,9 к.е. соответственно (табл. 2). Органические удобрения повышали продуктивность изучаемых севооборотов на 6,6 ц к.е/га (4,5-8,1 ц к.е/га по ротациям). При применении парной комбинации фосфорных и калийных удобрений ($P_{72}K_{119}$) продуктивность севооборотов повысилась. Максимальная эффективность среднегодового применения $P_{72}K_{119}$ отмечена в 1-й (1987-1991 гг.), 4-й и 5-й ротациях. Внесение NP и NK обеспечивало прибавку среднегодовой продуктивности севооборотов в среднем на 16,8 и 17,7 ц к.е./га, соответственно, что на 7,7 и 8,6 ц к.е/га выше, чем применение PK.

В среднем за пять ротаций внесение азотных удобрений увеличило продуктивность. Фосфорные и калийные удобрения также увеличили продуктивность культур. Более высокая среднегодовая продуктивность сельскохозяйственных культур в 5-й ротации обусловлена высокой урожайностью клевера лугового и отзывчивостью новых сортов зерновых культур на внесенные минеральные удобрения. Среднегодовая продуктивность культур во 2-й и 3-й ротациях практически во всех вариантах была

на одном уровне. Продуктивность в варианте без внесения удобрений в 3-й ротации севооборота снизилась по отношению к 1-й на 15,1 ц к.е/га (табл. 1).

Баланс азота в пяти севооборотах при среднегодовой продуктивности культур 46,7-78,4 ц/га к.е. и среднегодовом внесении органических удобрений 14,8 т/га севооборотной площади был положительным во всех вариантах. При этом его интенсивность изменялась. Отрицательный баланс азота был только в варианте без удобрений (табл.2).

Баланс фосфора был положительным во всех вариантах с внесением фосфорных удобрений — от 35,8 кг/га при среднегодовом внесении P_{40} (вар. 14) до 78 кг/га при среднегодовом применении P_{86} . Отрицательный баланс фосфора отмечен в вариантах без применения фосфорных удобрений. Интенсивность баланса изменялась.

Баланс калия был отрицательным в вариантах 1-3, 9, 12-15. Положительный баланс калия характерен для вариантов со среднегодовым внесением калийных удобрений в дозах 104-138 кг/га д.в. Интенсивность баланса изменялась.

В среднем за пять севооборотов в оптимальных по продуктивности вариантах при внесении $N_{94}P_{86}K_{138}$ (вар. 8) и $N_{106}P_{53}K_{94}$ (вар. 12) коэффициент использования азота из удобрений составил 55 и 57%, фосфора — 17 и 26, калия — 59 и 86% (табл. 2).

1. Продуктивность зернопропашных (1-3), зернотравяно-пропашного (4) и зернотравяного (5) севооборотов при возделывании

на дерново-подзолистои супесчанои почве (в среднем за 1987-2009 гг.)										
Среднегодовой уровень применения удобрений, по	Среднегодовая продуктивность севооборотов, ц к.е/га					Прибавка, ц к.е/га, от		Окупаемость 1 кг д.в. удобрений, к.е.		
1										
вариантам опыта, кг/га д.в.	1	2	3	4	5	средняя	NPK	N	NPK	N
1. Без удобрений	48,9	37,7	33,8	55,1	57,7	46,7		1	-	_
2. Навоз КРС, 14,8 т/га – фон	54,5	42,5	41,7	63,2	65,2	53,3	6,6	_	0,7	_
3. N ₇₈ P ₇₂	72,4	58,0	56,8	81	82,3	70,1	16,8	-	11,2	-
4. N ₇₈ K ₁₁₉	75,4	60,7	54,8	83,4	80,3	71,0	17,7	-	9,0	_
5. P ₇₂ K ₁₁₉	63,7	48,0	49,2	73,3	77,7	62,4	9,1	_	4,8	_
6. N ₄₉ P ₇₂ K ₁₁₉	79,7	60,2	56,7	80,4	87,5	72,9	19,5	10,4	8,1	21,2
7. N ₇₈ P ₇₂ K ₁₁₉	85,7	61,2	59,8	82,2	86,3	75,0	21,7	12,6	8,1	16,2
8. N ₉₄ P ₈₆ K ₁₃₈ *	89,0	62,5	62,6	87,6	90,7	78,4	25,1	16,0	7,9	17,0
9. N ₃₇ P ₅₃ K ₉₄	87,7	65,4	49,5	71,5	77,6	70,3	16,9	-	9,2	-
10. N ₆₁ P ₅₃ K ₁₀₄	86,4	63,6	58,9	78,6	86,8	74,9	21,6	_	9,9	_
11. N ₇₈ P ₆₆ K ₁₁₄	84,7	62,9	57,5	82,2	87,3	74,9	21,6	_	8,4	_
12. N ₁₀₆ P ₅₃ K ₉₄ *	87,9	65,0	61,7	87,8	89,4	78,4	25,0	_	9,9	_
13. N ₄₉ P ₅₄ K ₈₇	88,5	66,3	48,6	69,8	72,3	69,0	15,7	_	8,3	_
14. N ₇₄ P ₄₀ K ₆₇	82	62,4	55,8	75,6	81,2	71,3	18,0	_	10,0	
15. N ₉₀ P ₅₄ K ₈₇	79,2	62,1	56,7	79,4	82,9	72,0	18,7	_	8,1	
HCP ₀₅	3,1	1,9	2,0	3,3	1,7	2,6				

^{*}Дробное внесение азотных удобрений в два или три срока.

2. Среднегодовой баланс элементов питания за пять севооборотов на дерново-подзолистой супесчаной почве

	Азот		Фосфор		Калий		Коэффициент использования		
							элементов питания из		
№ варианта							удобрений, %		
	баланс,	ИБ*,	баланс,	ИБ,	баланс,	ИБ,	N	P_2O_5	K ₂ O
	кг/га ±	%	кг/га ±	%	кг/га ±	%	11		
1	-20,0	69	-25,3	6	-98	10	_	_	_
2	22,3	124	1	103	-32,2	75	-	_	_
3	43,6	129	68,3	263	-71,7	57	49	15	_
4	39,4	126	-3	93	30	116	54	_	48
5	13,1	113	73,6	301	57,3	137	-	7	25
6	24,1	117	66,3	251	32,1	118	77	17	46
7	34,2	122	65,9	249	23,3	112	62	18	53
8	40,6	124	78,2	271	24,3	112	55	17	59
9	7,0	105	40,1	194	-7,1	96	123	26	73
10	25,3	117	39,3	190	3,8	102	74	27	65
11	33,6	121	45,6	203	16,1	108	62	25	58
12	42,1	124	46,1	202	-19,1	91	57	26	86
13	6,7	104	48,9	213	-22,5	89	109	22	89
14	27,0	117	35,8	184	-27,3	86	69	28	71
15	38,9	123	49,3	215	-9,7	95	57	21	74

Примечание. ИБ – интенсивность баланса.

Содержание подвижного фосфора за 22 года возделывания сельскохозяйственных культур на дерново-подзолистой супесчаной почве в пахотном слое повысилось на 45-130 мг/кг почвы во всех вариантах с применением фосфорных удобрений в дозах 40-86 кг/га д.в. За указанный период

содержание фосфора в пахотном слое дерново-подзолистой супесчаной почвы, в вариантах, где не применяли фосфорные удобрения, снизилось на 12-27 мг/кг. Максимальное снижение фосфора в почве отмечено в варианте без удобрений. Практически повышение запасов подвижного фос-

фора в пахотном слое на 12-146 мг/кг почвы происходило на протяжении возделывания сельскохозяйственных куль-

тур в трех четырехпольных зернопропашных севооборотах (табл. 3).

3. Влияние систем удобрения на изменение содержания фосфора (числитель) и калия (знаменатель) в пахотном слое дерновоподзолистой супесчаной почвы за пять севооборотов, мг/кг

№ варианта	1986-1987 гг.	1990-1991 гг.	1994-1995 гг.	1998-1999 гг.	2003-2004 гг.	2008-2009 гг.
1	155/216	159/132	166/117	172/112	153/111	128/69
2	163/212	170/136	174/132	190/148	170/126	151/95
3	146/186	228/106	208/126	246/150	230/105	225/72
4	169/208	168/163	162/180	181/220	165/262	149/231
5	124/212	240/218	223/220	268/258	254/287	254/241
6	134/212	232/174	228/180	262/225	269/264	264/223
7	137/190	238/172	234/186	281/216	282/257	260/214
8	144/172	262/209	272/213	290/227	283/254	266/218
9	144/230	248/166	241/190	274/230	270/265	241/217
10	152/210	238/207	254/242	266/246	251/250	240/203
11	160/190	281/211	282/222	290/228	266/219	234/162
12	159/239	240/156	237/179	265/213	239/210	222/166
13	151/182	254/182	255/210	279/228	241/216	223/171
14	140/219	234/153	236/174	257/192	222/167	207/147
15	148/176	252/182	256/196	267/202	217/156	193/116
HCP ₀₅	41/30	43/35	45/37	40/33	35/22	37/24,4

Содержание калия в пахотном слое дерновоподзолистой супесчаной почвы увеличилось на 11-46
мг/кг почвы в вариантах со среднегодовым применением
калийных удобрений в дозах 119-138 кг/га д.в. или наблюдалась тенденция к его увеличению. Максимальное
снижение содержания подвижного калия в пахотном слое
отмечено в варианте без удобрений. При применении
органической системы удобрения (среднегодовое применение 14,8 т/га) содержание калия снизилось на 5,3 мг/кг
в год. Таким образом, внесение калийных удобрений в
дозах 67-114 кг/га д.в. при продуктивности севооборотов
69-78 ц к.е/га не обеспечивает сохранение калия в пахотном слое дерново-подзолистой супесчаной почвы.

Кислотность пахотного слоя сохранялась практически на одном уровне при трех ротациях зернопропашного севооборота (1-3) с изменениями в пределах ошибки опыта. Кислотность пахотного слоя при введении в севооборот (зернотравяно-пропашной) клевера лугового, который потребляет большое количество кальция и магния, повысилась на 0,23-0,35 ед. по сравнению с 1998-1999 гг. При возделывании зернотравяного севооборота с клевером луговым и пелюшко-овсяной смесью кислотность пахотного слоя (за две ротации 1998-2009 гг.) увеличилась на 0,28-0,52 ед. (вар.8) по сравнению с 1998-1999 гг.

Содержание гумуса в пахотном слое при среднегодовом применении органических удобрений 14,8 т/га повысилось на 0,26-0,56 %, т.е. практически изменялось в пределах ошибки опыта или сохранялось на первоначальном уровне, или несколько увеличивалось (табл.4).

4. Влияние удобрений на изменение содержания гумуса в пахотном слое дерново-подзолистой супесчаной почвы за пять сево-

оборотов								
$N_{\overline{0}}$		1990-	1994-	1998-	2003-	2008-		
вариан-	1986-1987 гг.	1991	1995	1999	2004	2009		
та		ΓΓ.	ΓΓ.	ΓΓ.	ΓΓ.	ΓΓ.		
1	2,35	2,61	2,62	3,04	2,62	2,71		
2	2,59	2,74	2,98	3,19	2,78	2,84		
3	2,51	2,72	3,06	3,36	2,84	2,90		
4	2,65	2,88	3,08	3,25	3,03	2,98		
5	2,99	3,13	3,00	3,19	2,85	2,91		
6	2,48	2,79	2,99	3,19	2,94	2,97		
7	2,54	2,80	3,11	3,20	2,82	2,94		
8	2,64	2,96	2,96	3,20	2,90	2,91		
9	2,36	2,82	3,09	3,08	2,91	2,91		
10	2,62	3,05	3,13	3,44	2,91	2,96		
11	2,63	3,04	3,13	3,41	2,92	2,95		
12	2,66	2,96	3,17	3,29	2,99	3,02		
13	2,49	2,85	3,05	3,33	2,95	2,94		
14	2,60	2,95	3,01	3,50	3,01	3,12		
15	2,28	2,86	2,88	3,50	2,82	2,97		
HCP ₀₅	0,38	0,36	0,34	0,40	0,31	0,28		

Заключение. Проведение длительного стационарного полевого опыта позволило получить надежные и объективные данные по оценке влияния применения удобрений на продуктивность сельскохозяйственных культур и изменение агрохимических свойств дерново-подзолистой супесчаной почвы с оптимальным содержанием подвижных фосфора и калия на протяжении нескольких ротаций севооборотов. В варианте без удобрений при среднегодовой продуктивности 46,7 ц к.е/га содержание гумуса повысилось, снизилось содержание подвижного фосфора и калия, кислотность почвенной среды пахотного слоя увеличилась. Среднегодовое применение 14,8 т/га органических удобрений обеспечило продуктивность сельскохозяйственных культур 53,3 ц к.е/га при сохранении содержания гумуса на первоначальном уровне, а содержание подвижных фосфора и калия при этом снизилось. Обменная кислотность почвенной среды повысилась во всех вариантах опыта. При возрастании доз азотных удобрений кислотность пахотного слоя увеличилась, а содержание подвижных фосфора и калия уменьшилось. В вариантах с оптимальной в опыте продуктивностью 78,4 ц к.е/га при среднегодовом внесении $N_{94}P_{86}K_{138}$ и $N_{106}P_{53}K_{94}$ на фоне 8 т/га органических удобрений почвенная кислотность и содержание подвижного фосфора повысились. Содержание подвижного калия при среднегодовом внесении $N_{94}P_{86}K_{138}$ повысилось, а при внесении $N_{106}P_{53}K_{94}$ снизилось. При возделывании новых интенсивных сортов сельскохозяйственных культур и при среднегодовой продуктивности двух севооборотов (4- и 5-й) на уровне 71,1 ц к.е/га (среднегодовое применение $P_{20}K_{42}$) – 88,6 ц к.е/га (среднегодовое применение $N_{84}P_{40}K_{82}$) внесение фосфорных и калийных удобрений в дозах $P_{20,40}K_{42,84}$ и на их фоне азотных (N₃₆₋₈₄) не обеспечивает сохранение содержания подвижных фосфора и калия на первоначальном уровне. За два пятипольных севооборота содержание подвижного фосфора и подвижного калия уменьшилось.

Полученные данные позволяют прогнозировать изменение агрохимических свойств почв на перспективу, определить оптимальные размеры интенсивности баланса основных элементов питания и оценить роль погодных условий в формировании продуктивности сельскохозяйственных культур. Все эти вопросы невозможно решить в обычных краткосрочных полевых опытах, даже в пределах одной ротации севооборота. Поэтому длительные полевые опыты очень ценны для агрохимической науки и их необходимо иметь на каждой из основных почвенных разностей в каждой почвенно-климатической зоне.

Литература

^{1.} *Брагин, А.М.* Влияние длительного применения различных систем удобрения в севообороте на изменение агрохимических свойств и окультуренность почвы // Эффективность удобрений, урожайность

сельскохозяйственных культур и плодородие почв. — Горки: БСХА, 1989. — С. 9-23. 2. *Кулаковская, Т.Н.* Оптимизация агрохимической системы почвенного питания растений. — М.: Агропромиздат, 1990. — 219 с. 3. *Лыков, А.М.* Воспроизводство плодородия почвы при длительном применении удобрений и севооборота / *А.М. Лыков [и др.]* // Повышение плодородия почв и получение запланированных урожаев сельскохозяйственных культур.— М., 1985. — С. 16-22. 4. *Минеев, В.Г.* Плодородие и биологическая активность дерново-подзолистой почвы при длительном применении удобрений и их последействии / *В.Г. Минеев, Н.Ф. Гомонова, М.Ф. Овчиникова* // Агрохимия. — 2004.— №7. — С.5-10. 5. *Минеев В.Г., Ремпе Е.Х.* Агрохимия, биология и экология почвы.- М.: Росагропромиздат, 1990. — 206 с. 6. *Организационно-технологические* нормативы возделывания сельскохозяйственных культур: сборник отраслевых регламентов/ Ин. аграр. экономики НАН Беларуси; рук. разраб. В.Г. Гусаков и [др.].- Минск: Бел.

наука, 2005.— 460 с. 7. Лапа, В.В. Продуктивность зернового севооборота и плодородие дерново-подзолистой почвы при различных системах применения удобрений / В.В. Лапа, Н.Н. Ивахненко, А.С., Васько, О.Е Шаковец // Агрохимия. — 2003.— № 1.— С. 20-29. 8. Лапа, В.В. Продуктивность зернотравяного севооборота и плодородие дерново-подзолистой супесчаной почвы при применении различных систем удобрения / В.В. Лапа, Н.Н. Ивахненко, М.М. Ломонос, А.А. Грачева, А.В. Бачище // Почвоведение и агрохимия.— 2011.— № 1(46). — С. 89-104. 9. Лапа, В.В. Продуктивность севооборотов и изменении плодородия дерново-подзолистой супесчаной почвы при длительном применении удобрений / В.В. Лапа, Н.Н. Ивахненко // Агрохимия.— 2012.— № 9.— С. 41-48. 10. Лапа, В.В. Методика расчета баланса элементов питания в земледелии Республики Беларусь / В.В. Лапа, [и др.] // Минск, 2007.— 26 с.

PRODUCTIVITY OF CROP ROTATIONS, NUTRIENT BALANCE, AND SOIL FERTILITY CHANGES ON LOAMY SANDY SODDY-PODZOLIC SOIL UNDER LONG-TERM FERTILIZATION

V.V. Lapa, I.V. Ivakhnenko, Institute of Soil Science and Agrochemistry, ul. Kazintsa 62, Minsk, 20108 Republic Belarus E-mail: brissagro@biz.by

The results of a 22-year stationary field experiment (crop productivity, fertilizer efficiency, nutrient balance, and changes in soil fertility parameters) on loamy sandy soddy-podzolic soil with the optimal contents of phosphorus and potassium during several rotation cycles have been reported. At an average productivity of 71–87 dt f.u./ha, the application of phosphorus and potassium fertilizers did not ensure the initial contents of both nutrients. Acidification occurred simultaneously with the decrease of potassium and phosphorus availability as a result of increasing N fertilization rates.

Key words: long-term field experiment, fertilization system, crop rotation, soil fertility, agrochemical parameters us, fertility, pests.